The Schur Transformation for Generalized Nevanlinna Functions: Interpolation and Self-Adjoint Operator Realizations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-05

AUTHORS

Daniel Alpay, Aad Dijksma, Heinz Langer, Yuri Shondin

ABSTRACT

The Schur transformation for generalized Nevanlinna functions has been defined and applied in [2]. In this paper we discuss its relation to a basic interpolation problem and study its effect on the minimal self-adjoint operator (or relation) realization of a generalized Nevanlinna function.

PAGES

169-210

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11785-006-0007-5

DOI

http://dx.doi.org/10.1007/s11785-006-0007-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010040070


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ben-Gurion University of the Negev", 
          "id": "https://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, IL-84105, Beer-Sheva, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpay", 
        "givenName": "Daniel", 
        "id": "sg:person.011517101346.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, NL-9700 AV, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute of Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "Heinz", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Theoretical Physics, Faculty of Mathematics, Informatics and Physics, N. Novgorod State Pedagogical University, Str. Ulyanova 1, GSP 37, RUS-603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shondin", 
        "givenName": "Yuri", 
        "id": "sg:person.015771172577.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-05", 
    "datePublishedReg": "2007-05-01", 
    "description": "The Schur transformation for generalized Nevanlinna functions has been defined and applied in [2]. In this paper we discuss its relation to a basic interpolation problem and study its effect on the minimal self-adjoint operator (or relation) realization of a generalized Nevanlinna function.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11785-006-0007-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136197", 
        "issn": [
          "1661-8254", 
          "1661-8262"
        ], 
        "name": "Complex Analysis and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "The Schur Transformation for Generalized Nevanlinna Functions: Interpolation and Self-Adjoint Operator Realizations", 
    "pagination": "169-210", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2fd4ac7aa7bfaa124ec65b9db49a6d674299d219fb78449e63f531ee53d3d8ee"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11785-006-0007-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010040070"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11785-006-0007-5", 
      "https://app.dimensions.ai/details/publication/pub.1010040070"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89826_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11785-006-0007-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11785-006-0007-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11785-006-0007-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11785-006-0007-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11785-006-0007-5'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      19 PREDICATES      25 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11785-006-0007-5 schema:author N199748dbd2154ba48f32f6dbba10c926
2 schema:datePublished 2007-05
3 schema:datePublishedReg 2007-05-01
4 schema:description The Schur transformation for generalized Nevanlinna functions has been defined and applied in [2]. In this paper we discuss its relation to a basic interpolation problem and study its effect on the minimal self-adjoint operator (or relation) realization of a generalized Nevanlinna function.
5 schema:genre research_article
6 schema:inLanguage en
7 schema:isAccessibleForFree true
8 schema:isPartOf N465456e56db045dcbecf7ad3a6ecdf1c
9 N64eff12cdafa4ac9b53bad2b98d764de
10 sg:journal.1136197
11 schema:name The Schur Transformation for Generalized Nevanlinna Functions: Interpolation and Self-Adjoint Operator Realizations
12 schema:pagination 169-210
13 schema:productId N17467d2260d04decb4611547617f5c46
14 N49f159c1a9c74ba3905e87c84686e9f1
15 Nb533f7978fa34ae38e91c9b20908a313
16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010040070
17 https://doi.org/10.1007/s11785-006-0007-5
18 schema:sdDatePublished 2019-04-11T10:04
19 schema:sdLicense https://scigraph.springernature.com/explorer/license/
20 schema:sdPublisher Nc835e614cbbc4bf7bfca7282786e5389
21 schema:url https://link.springer.com/10.1007%2Fs11785-006-0007-5
22 sgo:license sg:explorer/license/
23 sgo:sdDataset articles
24 rdf:type schema:ScholarlyArticle
25 N17467d2260d04decb4611547617f5c46 schema:name doi
26 schema:value 10.1007/s11785-006-0007-5
27 rdf:type schema:PropertyValue
28 N199748dbd2154ba48f32f6dbba10c926 rdf:first sg:person.011517101346.40
29 rdf:rest N7fbb3ebe9d6c4da9a19623becbf481ac
30 N465456e56db045dcbecf7ad3a6ecdf1c schema:issueNumber 2
31 rdf:type schema:PublicationIssue
32 N49f159c1a9c74ba3905e87c84686e9f1 schema:name readcube_id
33 schema:value 2fd4ac7aa7bfaa124ec65b9db49a6d674299d219fb78449e63f531ee53d3d8ee
34 rdf:type schema:PropertyValue
35 N64eff12cdafa4ac9b53bad2b98d764de schema:volumeNumber 1
36 rdf:type schema:PublicationVolume
37 N7fbb3ebe9d6c4da9a19623becbf481ac rdf:first sg:person.013762723211.39
38 rdf:rest Nf8ca8b2b82a9449f8cc708dac1c3ba7f
39 Na7ac4688c7584198ad83afbb6538db21 rdf:first sg:person.015771172577.94
40 rdf:rest rdf:nil
41 Nb533f7978fa34ae38e91c9b20908a313 schema:name dimensions_id
42 schema:value pub.1010040070
43 rdf:type schema:PropertyValue
44 Nc835e614cbbc4bf7bfca7282786e5389 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Nd27779b74c5e460eba9bb057954870f6 schema:name Department of Theoretical Physics, Faculty of Mathematics, Informatics and Physics, N. Novgorod State Pedagogical University, Str. Ulyanova 1, GSP 37, RUS-603950, Nizhny Novgorod, Russia
47 rdf:type schema:Organization
48 Nf8ca8b2b82a9449f8cc708dac1c3ba7f rdf:first sg:person.07450173411.71
49 rdf:rest Na7ac4688c7584198ad83afbb6538db21
50 sg:journal.1136197 schema:issn 1661-8254
51 1661-8262
52 schema:name Complex Analysis and Operator Theory
53 rdf:type schema:Periodical
54 sg:person.011517101346.40 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
55 schema:familyName Alpay
56 schema:givenName Daniel
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40
58 rdf:type schema:Person
59 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
60 schema:familyName Dijksma
61 schema:givenName Aad
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
63 rdf:type schema:Person
64 sg:person.015771172577.94 schema:affiliation Nd27779b74c5e460eba9bb057954870f6
65 schema:familyName Shondin
66 schema:givenName Yuri
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94
68 rdf:type schema:Person
69 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
70 schema:familyName Langer
71 schema:givenName Heinz
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
73 rdf:type schema:Person
74 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
75 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, NL-9700 AV, Groningen, The Netherlands
76 rdf:type schema:Organization
77 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
78 schema:name Institute of Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria
79 rdf:type schema:Organization
80 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
81 schema:name Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, IL-84105, Beer-Sheva, Israel
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...