A compactness result for non-local unregularized gradient flow lines View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Peter Albers, Urs Frauenfelder, Felix Schlenk

ABSTRACT

We prove an abstract compactness result for gradient flow lines of a non-local unregularized gradient flow equation on a scale Hilbert space. This is the first step towards Floer theory on scale Hilbert spaces.

PAGES

34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11784-019-0671-5

DOI

http://dx.doi.org/10.1007/s11784-019-0671-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112225340


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Heidelberg University", 
          "id": "https://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Mathematisches Institut, Universit\u00e4t Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Albers", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Mathematisches Institut, Universit\u00e4t Augsburg, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frauenfelder", 
        "givenName": "Urs", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Neuch\u00e2tel", 
          "id": "https://www.grid.ac/institutes/grid.10711.36", 
          "name": [
            "Institut de Math\u00e9matiques, Universit\u00e9 de Neuch\u00e2tel, Neuch\u00e2tel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlenk", 
        "givenName": "Felix", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006285432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01393824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018141894", 
          "https://doi.org/10.1007/bf01393824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/blms/27.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028652716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22842-1_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030395675", 
          "https://doi.org/10.1007/978-3-642-22842-1_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.12942/lrr-2012-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045639792", 
          "https://doi.org/10.12942/lrr-2012-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/aphy.1994.1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045822921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160370204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052740109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160370204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052740109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/161130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058492420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imrn/rnw029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059692049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793525313500210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063022779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14492/hokmj/1478487612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067330118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2009.239.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069071868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2009.239.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069071868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcds.2010.28.665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071734164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214442477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2018.08.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106320695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1365/s13291-018-0193-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109891761", 
          "https://doi.org/10.1365/s13291-018-0193-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "We prove an abstract compactness result for gradient flow lines of a non-local unregularized gradient flow equation on a scale Hilbert space. This is the first step towards Floer theory on scale Hilbert spaces.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11784-019-0671-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5228526", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136479", 
        "issn": [
          "1661-7738", 
          "1661-7746"
        ], 
        "name": "Journal of Fixed Point Theory and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "A compactness result for non-local unregularized gradient flow lines", 
    "pagination": "34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6789c0f9b2aa050b21c6591746b144852e5dd1f0a291e0789820e7c04cbe308b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11784-019-0671-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112225340"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11784-019-0671-5", 
      "https://app.dimensions.ai/details/publication/pub.1112225340"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87088_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11784-019-0671-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11784-019-0671-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11784-019-0671-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11784-019-0671-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11784-019-0671-5'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      20 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11784-019-0671-5 schema:author N755eac5fa7ea42a7a38ea4a6379f4801
2 schema:citation sg:pub.10.1007/978-3-642-22842-1_14
3 sg:pub.10.1007/bf01393824
4 sg:pub.10.12942/lrr-2012-10
5 sg:pub.10.1365/s13291-018-0193-x
6 https://doi.org/10.1002/cpa.1012
7 https://doi.org/10.1002/cpa.3160370204
8 https://doi.org/10.1006/aphy.1994.1012
9 https://doi.org/10.1016/j.jde.2018.08.036
10 https://doi.org/10.1086/161130
11 https://doi.org/10.1093/imrn/rnw029
12 https://doi.org/10.1112/blms/27.1.1
13 https://doi.org/10.1142/s1793525313500210
14 https://doi.org/10.14492/hokmj/1478487612
15 https://doi.org/10.2140/pjm.2009.239.251
16 https://doi.org/10.3934/dcds.2010.28.665
17 https://doi.org/10.4310/jdg/1214442477
18 schema:datePublished 2019-03
19 schema:datePublishedReg 2019-03-01
20 schema:description We prove an abstract compactness result for gradient flow lines of a non-local unregularized gradient flow equation on a scale Hilbert space. This is the first step towards Floer theory on scale Hilbert spaces.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N1d6d12865d324bb98a0cd9d78757edd8
25 N398e290774b1450a887d9bda23795210
26 sg:journal.1136479
27 schema:name A compactness result for non-local unregularized gradient flow lines
28 schema:pagination 34
29 schema:productId N53d049383a6248cb9a0fe629e7f4a2dd
30 Nb0f1547a3b6c4ebcb44ae08867ad734d
31 Nff7a7cf7a5c548268cf5c65432ec7750
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112225340
33 https://doi.org/10.1007/s11784-019-0671-5
34 schema:sdDatePublished 2019-04-11T12:23
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N76c62ef2d70d46168e53c2297777dab3
37 schema:url https://link.springer.com/10.1007%2Fs11784-019-0671-5
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1d6d12865d324bb98a0cd9d78757edd8 schema:volumeNumber 21
42 rdf:type schema:PublicationVolume
43 N398e290774b1450a887d9bda23795210 schema:issueNumber 1
44 rdf:type schema:PublicationIssue
45 N53d049383a6248cb9a0fe629e7f4a2dd schema:name dimensions_id
46 schema:value pub.1112225340
47 rdf:type schema:PropertyValue
48 N6f8b84228ae14b648de8fa5f130717f2 schema:affiliation https://www.grid.ac/institutes/grid.7700.0
49 schema:familyName Albers
50 schema:givenName Peter
51 rdf:type schema:Person
52 N755eac5fa7ea42a7a38ea4a6379f4801 rdf:first N6f8b84228ae14b648de8fa5f130717f2
53 rdf:rest Nc93ad9c581344945993787f8e8b8463f
54 N76c62ef2d70d46168e53c2297777dab3 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nb0f1547a3b6c4ebcb44ae08867ad734d schema:name readcube_id
57 schema:value 6789c0f9b2aa050b21c6591746b144852e5dd1f0a291e0789820e7c04cbe308b
58 rdf:type schema:PropertyValue
59 Nc93ad9c581344945993787f8e8b8463f rdf:first Nfab8637be93f4534ae88738f8b05e132
60 rdf:rest Nf5912d75893241de8dc4bb557a1d6099
61 Ne9ad6f9ef00b4373a3609b4ed1a70c32 schema:affiliation https://www.grid.ac/institutes/grid.10711.36
62 schema:familyName Schlenk
63 schema:givenName Felix
64 rdf:type schema:Person
65 Nf5912d75893241de8dc4bb557a1d6099 rdf:first Ne9ad6f9ef00b4373a3609b4ed1a70c32
66 rdf:rest rdf:nil
67 Nfab8637be93f4534ae88738f8b05e132 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
68 schema:familyName Frauenfelder
69 schema:givenName Urs
70 rdf:type schema:Person
71 Nff7a7cf7a5c548268cf5c65432ec7750 schema:name doi
72 schema:value 10.1007/s11784-019-0671-5
73 rdf:type schema:PropertyValue
74 sg:grant.5228526 http://pending.schema.org/fundedItem sg:pub.10.1007/s11784-019-0671-5
75 rdf:type schema:MonetaryGrant
76 sg:journal.1136479 schema:issn 1661-7738
77 1661-7746
78 schema:name Journal of Fixed Point Theory and Applications
79 rdf:type schema:Periodical
80 sg:pub.10.1007/978-3-642-22842-1_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030395675
81 https://doi.org/10.1007/978-3-642-22842-1_14
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01393824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018141894
84 https://doi.org/10.1007/bf01393824
85 rdf:type schema:CreativeWork
86 sg:pub.10.12942/lrr-2012-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045639792
87 https://doi.org/10.12942/lrr-2012-10
88 rdf:type schema:CreativeWork
89 sg:pub.10.1365/s13291-018-0193-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1109891761
90 https://doi.org/10.1365/s13291-018-0193-x
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1002/cpa.1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006285432
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/cpa.3160370204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052740109
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1006/aphy.1994.1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045822921
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.jde.2018.08.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106320695
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1086/161130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058492420
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1093/imrn/rnw029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059692049
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1112/blms/27.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028652716
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1142/s1793525313500210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063022779
107 rdf:type schema:CreativeWork
108 https://doi.org/10.14492/hokmj/1478487612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067330118
109 rdf:type schema:CreativeWork
110 https://doi.org/10.2140/pjm.2009.239.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069071868
111 rdf:type schema:CreativeWork
112 https://doi.org/10.3934/dcds.2010.28.665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071734164
113 rdf:type schema:CreativeWork
114 https://doi.org/10.4310/jdg/1214442477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459677
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.10711.36 schema:alternateName University of Neuchâtel
117 schema:name Institut de Mathématiques, Université de Neuchâtel, Neuchâtel, Switzerland
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
120 schema:name Mathematisches Institut, Universität Augsburg, Augsburg, Germany
121 rdf:type schema:Organization
122 https://www.grid.ac/institutes/grid.7700.0 schema:alternateName Heidelberg University
123 schema:name Mathematisches Institut, Universität Heidelberg, Heidelberg, Germany
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...