Multiplicity results for a class of singular elliptic equation involving sublinear Neumann boundary condition in R2 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08-04

AUTHORS

K. Saoudi

ABSTRACT

Let Ω⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb R}^2$$\end{document} be a bounded domain with boundary of class C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}. The purpose of this paper is to study the existence of positive solution for the following inhomogeneous singular Neumann problem: (Pμ,λ)-Δu+u=μu-δ+h(x,u)euα,u>0inΩ,∂u∂ν=λψuqon∂Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (P_{\mu ,\lambda })\qquad \left\{ \begin{array}{ll} &{} - \Delta u+u = \mu u^{-\delta }+h(x,u)e^{u^\alpha }, \quad u>0 \quad \text {in } \Omega , \\ &{}\frac{\partial u}{\partial \nu }= \lambda \psi u^q \quad \text {on }\partial \Omega . \end{array}\right. \end{aligned}$$\end{document}where μ,λ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ,\lambda >0,$$\end{document}0<δ<3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\delta <3,$$\end{document}1≤α≤2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le \alpha \le 2,$$\end{document}0≤q<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le q<1,$$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is a non-negative Hölder continuous function on Ω¯.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\Omega }.$$\end{document} Here, h(x, u) is a C1(Ω¯×R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1}(\overline{\Omega }\times \mathbb {R})$$\end{document} having superlinear growth at infinity. Using variational methods, we show that there exists a region R⊂{(μ,λ):μ,λ>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}\subset \{(\mu ,\lambda ):\;\mu ,\lambda >0\}$$\end{document} bounded by the graph of a map Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}, such that (Pμ,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{\mu ,\lambda })$$\end{document} admits at least two solutions for all (μ,λ)∈R,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\lambda ) \in \mathcal {R},$$\end{document} at least one solution for (μ,λ)∈∂R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\lambda )\in \partial \mathcal {R}$$\end{document} and no solution for all (μ,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\lambda )$$\end{document} outside R¯.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal {R}}.$$\end{document} More... »

PAGES

2963-2984

References to SciGraph publications

  • 2005-04-15. Singular elliptic problems with lack of compactness in ANNALI DI MATEMATICA PURA ED APPLICATA (1923 -)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11784-017-0466-5

    DOI

    http://dx.doi.org/10.1007/s11784-017-0466-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091046992


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "College of sciences at Dammam, University of Dammam, 31441, Dammam, Kingdom of Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.411975.f", 
              "name": [
                "College of sciences at Dammam, University of Dammam, 31441, Dammam, Kingdom of Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saoudi", 
            "givenName": "K.", 
            "id": "sg:person.010152552131.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152552131.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10231-004-0128-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005632313", 
              "https://doi.org/10.1007/s10231-004-0128-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-08-04", 
        "datePublishedReg": "2017-08-04", 
        "description": "Let \u03a9\u2282R2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Omega \\subset {\\mathbb R}^2$$\\end{document} be a bounded domain with boundary of class C2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C^2$$\\end{document}. The purpose of this paper is to study the existence of positive solution for the following inhomogeneous singular Neumann problem: (P\u03bc,\u03bb)-\u0394u+u=\u03bcu-\u03b4+h(x,u)eu\u03b1,u>0in\u03a9,\u2202u\u2202\u03bd=\u03bb\u03c8uqon\u2202\u03a9.\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\begin{aligned} (P_{\\mu ,\\lambda })\\qquad \\left\\{ \\begin{array}{ll} &{} - \\Delta u+u = \\mu u^{-\\delta }+h(x,u)e^{u^\\alpha }, \\quad u>0 \\quad \\text {in } \\Omega , \\\\ &{}\\frac{\\partial u}{\\partial \\nu }= \\lambda \\psi u^q \\quad \\text {on }\\partial \\Omega . \\end{array}\\right. \\end{aligned}$$\\end{document}where \u03bc,\u03bb>0,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu ,\\lambda >0,$$\\end{document}0<\u03b4<3,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0<\\delta <3,$$\\end{document}1\u2264\u03b1\u22642,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1\\le \\alpha \\le 2,$$\\end{document}0\u2264q<1,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0\\le q<1,$$\\end{document} and \u03c8\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\psi $$\\end{document} is a non-negative H\u00f6lder continuous function on \u03a9\u00af.\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\overline{\\Omega }.$$\\end{document} Here, h(x,\u00a0u) is a C1(\u03a9\u00af\u00d7R)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C^{1}(\\overline{\\Omega }\\times \\mathbb {R})$$\\end{document} having superlinear growth at infinity. Using variational methods, we show that there exists a region R\u2282{(\u03bc,\u03bb):\u03bc,\u03bb>0}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {R}\\subset \\{(\\mu ,\\lambda ):\\;\\mu ,\\lambda >0\\}$$\\end{document} bounded by the graph of a map \u039b\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Lambda $$\\end{document}, such that (P\u03bc,\u03bb)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(P_{\\mu ,\\lambda })$$\\end{document} admits at least two solutions for all (\u03bc,\u03bb)\u2208R,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(\\mu ,\\lambda ) \\in \\mathcal {R},$$\\end{document} at least one solution for (\u03bc,\u03bb)\u2208\u2202R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(\\mu ,\\lambda )\\in \\partial \\mathcal {R}$$\\end{document} and no solution for all (\u03bc,\u03bb)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(\\mu ,\\lambda )$$\\end{document} outside R\u00af.\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\overline{\\mathcal {R}}.$$\\end{document}", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11784-017-0466-5", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136479", 
            "issn": [
              "1661-7738", 
              "1661-7746"
            ], 
            "name": "Journal of Fixed Point Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "purpose", 
          "function", 
          "\u03bcU", 
          "growth", 
          "class", 
          "region", 
          "multiplicity", 
          "method", 
          "conditions", 
          "domain", 
          "R2", 
          "problem", 
          "existence", 
          "maps", 
          "solution", 
          "infinity", 
          "paper", 
          "continuous functions", 
          "boundaries", 
          "boundaries of class", 
          "H\u00f6lder continuous functions", 
          "equations", 
          "graph", 
          "positive solutions", 
          "p\u03bc", 
          "singular elliptic equation", 
          "superlinear growth", 
          "boundary conditions", 
          "Neumann problem", 
          "variational method", 
          "elliptic equations", 
          "Neumann boundary conditions", 
          "singular Neumann problem"
        ], 
        "name": "Multiplicity results for a class of singular elliptic equation involving sublinear Neumann boundary condition in R2", 
        "pagination": "2963-2984", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091046992"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11784-017-0466-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11784-017-0466-5", 
          "https://app.dimensions.ai/details/publication/pub.1091046992"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_735.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11784-017-0466-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11784-017-0466-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11784-017-0466-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11784-017-0466-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11784-017-0466-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    98 TRIPLES      21 PREDICATES      59 URIs      49 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11784-017-0466-5 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 schema:author N01ad07c07cf74631a8f247b82653514d
    5 schema:citation sg:pub.10.1007/s10231-004-0128-2
    6 schema:datePublished 2017-08-04
    7 schema:datePublishedReg 2017-08-04
    8 schema:description Let Ω⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb R}^2$$\end{document} be a bounded domain with boundary of class C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}. The purpose of this paper is to study the existence of positive solution for the following inhomogeneous singular Neumann problem: (Pμ,λ)-Δu+u=μu-δ+h(x,u)euα,u>0inΩ,∂u∂ν=λψuqon∂Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (P_{\mu ,\lambda })\qquad \left\{ \begin{array}{ll} &{} - \Delta u+u = \mu u^{-\delta }+h(x,u)e^{u^\alpha }, \quad u>0 \quad \text {in } \Omega , \\ &{}\frac{\partial u}{\partial \nu }= \lambda \psi u^q \quad \text {on }\partial \Omega . \end{array}\right. \end{aligned}$$\end{document}where μ,λ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ,\lambda >0,$$\end{document}0<δ<3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\delta <3,$$\end{document}1≤α≤2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le \alpha \le 2,$$\end{document}0≤q<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le q<1,$$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is a non-negative Hölder continuous function on Ω¯.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\Omega }.$$\end{document} Here, h(x, u) is a C1(Ω¯×R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1}(\overline{\Omega }\times \mathbb {R})$$\end{document} having superlinear growth at infinity. Using variational methods, we show that there exists a region R⊂{(μ,λ):μ,λ>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}\subset \{(\mu ,\lambda ):\;\mu ,\lambda >0\}$$\end{document} bounded by the graph of a map Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}, such that (Pμ,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{\mu ,\lambda })$$\end{document} admits at least two solutions for all (μ,λ)∈R,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\lambda ) \in \mathcal {R},$$\end{document} at least one solution for (μ,λ)∈∂R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\lambda )\in \partial \mathcal {R}$$\end{document} and no solution for all (μ,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\lambda )$$\end{document} outside R¯.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal {R}}.$$\end{document}
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N00882068a5304422965793c62f68bfee
    12 N3157877195034afcaa1eb9508de11b8d
    13 sg:journal.1136479
    14 schema:keywords Hölder continuous functions
    15 Neumann boundary conditions
    16 Neumann problem
    17 R2
    18 boundaries
    19 boundaries of class
    20 boundary conditions
    21 class
    22 conditions
    23 continuous functions
    24 domain
    25 elliptic equations
    26 equations
    27 existence
    28 function
    29 graph
    30 growth
    31 infinity
    32 maps
    33 method
    34 multiplicity
    35 paper
    36 positive solutions
    37 problem
    38 purpose
    39
    40 region
    41 singular Neumann problem
    42 singular elliptic equation
    43 solution
    44 superlinear growth
    45 variational method
    46 μU
    47 schema:name Multiplicity results for a class of singular elliptic equation involving sublinear Neumann boundary condition in R2
    48 schema:pagination 2963-2984
    49 schema:productId N43f230fdc3a3447cb4301f8162850509
    50 Nf3fcded58bc048279c60779e2c4e9b51
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091046992
    52 https://doi.org/10.1007/s11784-017-0466-5
    53 schema:sdDatePublished 2022-10-01T06:43
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher N89f3e154ecff400e80ff4ba328177ab8
    56 schema:url https://doi.org/10.1007/s11784-017-0466-5
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N00882068a5304422965793c62f68bfee schema:volumeNumber 19
    61 rdf:type schema:PublicationVolume
    62 N01ad07c07cf74631a8f247b82653514d rdf:first sg:person.010152552131.99
    63 rdf:rest rdf:nil
    64 N3157877195034afcaa1eb9508de11b8d schema:issueNumber 4
    65 rdf:type schema:PublicationIssue
    66 N43f230fdc3a3447cb4301f8162850509 schema:name doi
    67 schema:value 10.1007/s11784-017-0466-5
    68 rdf:type schema:PropertyValue
    69 N89f3e154ecff400e80ff4ba328177ab8 schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Nf3fcded58bc048279c60779e2c4e9b51 schema:name dimensions_id
    72 schema:value pub.1091046992
    73 rdf:type schema:PropertyValue
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Pure Mathematics
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Applied Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136479 schema:issn 1661-7738
    84 1661-7746
    85 schema:name Journal of Fixed Point Theory and Applications
    86 schema:publisher Springer Nature
    87 rdf:type schema:Periodical
    88 sg:person.010152552131.99 schema:affiliation grid-institutes:grid.411975.f
    89 schema:familyName Saoudi
    90 schema:givenName K.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152552131.99
    92 rdf:type schema:Person
    93 sg:pub.10.1007/s10231-004-0128-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005632313
    94 https://doi.org/10.1007/s10231-004-0128-2
    95 rdf:type schema:CreativeWork
    96 grid-institutes:grid.411975.f schema:alternateName College of sciences at Dammam, University of Dammam, 31441, Dammam, Kingdom of Saudi Arabia
    97 schema:name College of sciences at Dammam, University of Dammam, 31441, Dammam, Kingdom of Saudi Arabia
    98 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...