Low latency systolic multipliers for finite field GF (2m) based on irreducible polynomials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05

AUTHORS

Jia-feng Xie, Jian-jun He, Wei-hua Gui

ABSTRACT

Systolic implementation of multiplication over GF(2m) is usually very efficient in area-time complexity, but its latency is usually very large. Thus, two low latency systolic multipliers over GF(2m) based on general irreducible polynomials and irreducible pentanomials are presented. First, a signal flow graph (SFG) is used to represent the algorithm for multiplication over GF(2m). Then, the two low latency systolic structures for multiplications over GF(2m) based on general irreducible polynomials and pentanomials are presented from the SFG by suitable cut-set retiming, respectively. Analysis indicates that the proposed two low latency designs involve at least one-third less area-delay product when compared with the existing designs. To the authors’ knowledge, the time-complexity of the structures is the lowest found in literature for systolic GF(2m) multipliers based on general irreducible polynomials and pentanomials. The proposed low latency designs are regular and modular, and therefore they are suitable for many time critical applications. More... »

PAGES

1283-1289

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11771-012-1140-0

DOI

http://dx.doi.org/10.1007/s11771-012-1140-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019638436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Information Science and Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Jia-feng", 
        "id": "sg:person.016036034457.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016036034457.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Information Science and Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Jian-jun", 
        "id": "sg:person.012355016043.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012355016043.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Information Science and Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gui", 
        "givenName": "Wei-hua", 
        "id": "sg:person.014564074022.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564074022.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11771-010-0568-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015113046", 
          "https://doi.org/10.1007/s11771-010-0568-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11771-010-0016-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028643767", 
          "https://doi.org/10.1007/s11771-010-0016-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11771-010-0016-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028643767", 
          "https://doi.org/10.1007/s11771-010-0016-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11771-008-0131-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036602529", 
          "https://doi.org/10.1007/s11771-008-0131-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el.2010.0246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056750606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cds:20060314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056819288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ifs.2007.0132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056828474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ifs.2007.0132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056828474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-cdt:20030061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056845316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/12.769434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061088999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/12.926154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061089334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/31.135751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061152701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/92.661252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061248407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/92.831436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061248549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.1984.1676441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061533062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2005.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061534091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2009.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061534809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2010.2063026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061802338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvlsi.2008.2006080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061815897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107360211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098669533"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-05", 
    "datePublishedReg": "2012-05-01", 
    "description": "Systolic implementation of multiplication over GF(2m) is usually very efficient in area-time complexity, but its latency is usually very large. Thus, two low latency systolic multipliers over GF(2m) based on general irreducible polynomials and irreducible pentanomials are presented. First, a signal flow graph (SFG) is used to represent the algorithm for multiplication over GF(2m). Then, the two low latency systolic structures for multiplications over GF(2m) based on general irreducible polynomials and pentanomials are presented from the SFG by suitable cut-set retiming, respectively. Analysis indicates that the proposed two low latency designs involve at least one-third less area-delay product when compared with the existing designs. To the authors\u2019 knowledge, the time-complexity of the structures is the lowest found in literature for systolic GF(2m) multipliers based on general irreducible polynomials and pentanomials. The proposed low latency designs are regular and modular, and therefore they are suitable for many time critical applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11771-012-1140-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135866", 
        "issn": [
          "2095-2899", 
          "2227-5223"
        ], 
        "name": "Journal of Central South University", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Low latency systolic multipliers for finite field GF (2m) based on irreducible polynomials", 
    "pagination": "1283-1289", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d91256d516efeb1350ddbbf1b9d0252a0d3d99eb87bbae11ca0eafcc96115fe"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11771-012-1140-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019638436"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11771-012-1140-0", 
      "https://app.dimensions.ai/details/publication/pub.1019638436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11771-012-1140-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11771-012-1140-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11771-012-1140-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11771-012-1140-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11771-012-1140-0'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11771-012-1140-0 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Na9392030070a4e688460f87c7202b434
4 schema:citation sg:pub.10.1007/s11771-008-0131-7
5 sg:pub.10.1007/s11771-010-0016-4
6 sg:pub.10.1007/s11771-010-0568-3
7 https://doi.org/10.1017/cbo9781107360211
8 https://doi.org/10.1049/el.2010.0246
9 https://doi.org/10.1049/iet-cds:20060314
10 https://doi.org/10.1049/iet-ifs.2007.0132
11 https://doi.org/10.1049/ip-cdt:20030061
12 https://doi.org/10.1109/12.769434
13 https://doi.org/10.1109/12.926154
14 https://doi.org/10.1109/31.135751
15 https://doi.org/10.1109/92.661252
16 https://doi.org/10.1109/92.831436
17 https://doi.org/10.1109/tc.1984.1676441
18 https://doi.org/10.1109/tc.2005.147
19 https://doi.org/10.1109/tc.2009.62
20 https://doi.org/10.1109/tsp.2010.2063026
21 https://doi.org/10.1109/tvlsi.2008.2006080
22 schema:datePublished 2012-05
23 schema:datePublishedReg 2012-05-01
24 schema:description Systolic implementation of multiplication over GF(2m) is usually very efficient in area-time complexity, but its latency is usually very large. Thus, two low latency systolic multipliers over GF(2m) based on general irreducible polynomials and irreducible pentanomials are presented. First, a signal flow graph (SFG) is used to represent the algorithm for multiplication over GF(2m). Then, the two low latency systolic structures for multiplications over GF(2m) based on general irreducible polynomials and pentanomials are presented from the SFG by suitable cut-set retiming, respectively. Analysis indicates that the proposed two low latency designs involve at least one-third less area-delay product when compared with the existing designs. To the authors’ knowledge, the time-complexity of the structures is the lowest found in literature for systolic GF(2m) multipliers based on general irreducible polynomials and pentanomials. The proposed low latency designs are regular and modular, and therefore they are suitable for many time critical applications.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N6448d6e05fb145bda8d82d4fbaf2f0ac
29 N8c44b30a3ae84f349cd222152179065a
30 sg:journal.1135866
31 schema:name Low latency systolic multipliers for finite field GF (2m) based on irreducible polynomials
32 schema:pagination 1283-1289
33 schema:productId N17e3a28f5c0b4dea8c3c3a27c72cda23
34 N2250e52be5dc411fab1530eb8e8c7c0d
35 Naab6d0c793084a2ebab3e7b6ee2ffc31
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019638436
37 https://doi.org/10.1007/s11771-012-1140-0
38 schema:sdDatePublished 2019-04-10T18:22
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nb85a0c2c0bef45819602aadd165161c2
41 schema:url http://link.springer.com/10.1007%2Fs11771-012-1140-0
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N17e3a28f5c0b4dea8c3c3a27c72cda23 schema:name readcube_id
46 schema:value 5d91256d516efeb1350ddbbf1b9d0252a0d3d99eb87bbae11ca0eafcc96115fe
47 rdf:type schema:PropertyValue
48 N2250e52be5dc411fab1530eb8e8c7c0d schema:name dimensions_id
49 schema:value pub.1019638436
50 rdf:type schema:PropertyValue
51 N6448d6e05fb145bda8d82d4fbaf2f0ac schema:issueNumber 5
52 rdf:type schema:PublicationIssue
53 N81baddb8007441de917c38fb4bbd0040 rdf:first sg:person.014564074022.19
54 rdf:rest rdf:nil
55 N8c44b30a3ae84f349cd222152179065a schema:volumeNumber 19
56 rdf:type schema:PublicationVolume
57 N947894c1ec644d2bad990c7654af27a2 rdf:first sg:person.012355016043.26
58 rdf:rest N81baddb8007441de917c38fb4bbd0040
59 Na9392030070a4e688460f87c7202b434 rdf:first sg:person.016036034457.39
60 rdf:rest N947894c1ec644d2bad990c7654af27a2
61 Naab6d0c793084a2ebab3e7b6ee2ffc31 schema:name doi
62 schema:value 10.1007/s11771-012-1140-0
63 rdf:type schema:PropertyValue
64 Nb85a0c2c0bef45819602aadd165161c2 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
70 schema:name Computation Theory and Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1135866 schema:issn 2095-2899
73 2227-5223
74 schema:name Journal of Central South University
75 rdf:type schema:Periodical
76 sg:person.012355016043.26 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
77 schema:familyName He
78 schema:givenName Jian-jun
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012355016043.26
80 rdf:type schema:Person
81 sg:person.014564074022.19 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
82 schema:familyName Gui
83 schema:givenName Wei-hua
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564074022.19
85 rdf:type schema:Person
86 sg:person.016036034457.39 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
87 schema:familyName Xie
88 schema:givenName Jia-feng
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016036034457.39
90 rdf:type schema:Person
91 sg:pub.10.1007/s11771-008-0131-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036602529
92 https://doi.org/10.1007/s11771-008-0131-7
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s11771-010-0016-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028643767
95 https://doi.org/10.1007/s11771-010-0016-4
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s11771-010-0568-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015113046
98 https://doi.org/10.1007/s11771-010-0568-3
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1017/cbo9781107360211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098669533
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1049/el.2010.0246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056750606
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1049/iet-cds:20060314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056819288
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1049/iet-ifs.2007.0132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056828474
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1049/ip-cdt:20030061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056845316
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/12.769434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061088999
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/12.926154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061089334
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/31.135751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061152701
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/92.661252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061248407
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/92.831436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061248549
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tc.1984.1676441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061533062
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tc.2005.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061534091
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/tc.2009.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061534809
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/tsp.2010.2063026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061802338
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/tvlsi.2008.2006080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061815897
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
131 schema:name School of Information Science and Engineering, Central South University, 410083, Changsha, China
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...