Ontology type: schema:ScholarlyArticle
2006-02-01
AUTHORSXiang-qian Shen, Dong-hong Li, Mao-xiang Jing, Wang-xing Li
ABSTRACTThe precursors with NiCO3 · 2Ni(OH)2 · 2H2O, Fe2O3 · nH2O coated alumina microspheres were prepared by the aqueous heterogeneous precipitation using metal salts, ammonium bicarbonate and α-Al2O3 micropowders as the starting materials. Magnetic metal Ni, α-Fe coated alumina, core-shell structural microspheres were successfully obtained by thermal reduction of the precursors at 700 °C for 2 h, respectively. Powders of the precursors and the resultant metal (Ni, α-Fe) coated alumina micropowders were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results show that optimized precipitation parameters are concentration of alumina micropowders of 15 g/L, rate of adding reactants of 5 mL/min and pH value of 7.5. And under the optimized conditions, the spherical precursors without aggregations or agglomerations are obtained, then transferred into Ni, α-Fe coated alumina microspheres by thermal reduction. It is possible to adjust metal coating thicknesses and fabricate a multilayer structured metal/ceramics, core-shell microspherical powder materials. More... »
PAGES22-26
http://scigraph.springernature.com/pub.10.1007/s11771-006-0100-y
DOIhttp://dx.doi.org/10.1007/s11771-006-0100-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1050146655
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Shen",
"givenName": "Xiang-qian",
"id": "sg:person.0601655670.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Zhengzhou Research Institute, China Aluminum Corporation, 450041, Zhengzhou, China",
"id": "http://www.grid.ac/institutes/None",
"name": [
"School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China",
"Zhengzhou Research Institute, China Aluminum Corporation, 450041, Zhengzhou, China"
],
"type": "Organization"
},
"familyName": "Li",
"givenName": "Dong-hong",
"id": "sg:person.012573423245.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012573423245.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Jing",
"givenName": "Mao-xiang",
"id": "sg:person.01162236364.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Zhengzhou Research Institute, China Aluminum Corporation, 450041, Zhengzhou, China",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Zhengzhou Research Institute, China Aluminum Corporation, 450041, Zhengzhou, China"
],
"type": "Organization"
},
"familyName": "Li",
"givenName": "Wang-xing",
"id": "sg:person.012417254410.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012417254410.99"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/b:jmsl.0000005429.24974.e8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013703851",
"https://doi.org/10.1023/b:jmsl.0000005429.24974.e8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1008614514565",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043821420",
"https://doi.org/10.1023/a:1008614514565"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1017903332077",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002837165",
"https://doi.org/10.1023/a:1017903332077"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-02-01",
"datePublishedReg": "2006-02-01",
"description": "The precursors with NiCO3 \u00b7 2Ni(OH)2 \u00b7 2H2O, Fe2O3 \u00b7 nH2O coated alumina microspheres were prepared by the aqueous heterogeneous precipitation using metal salts, ammonium bicarbonate and \u03b1-Al2O3 micropowders as the starting materials. Magnetic metal Ni, \u03b1-Fe coated alumina, core-shell structural microspheres were successfully obtained by thermal reduction of the precursors at 700 \u00b0C for 2 h, respectively. Powders of the precursors and the resultant metal (Ni, \u03b1-Fe) coated alumina micropowders were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results show that optimized precipitation parameters are concentration of alumina micropowders of 15 g/L, rate of adding reactants of 5 mL/min and pH value of 7.5. And under the optimized conditions, the spherical precursors without aggregations or agglomerations are obtained, then transferred into Ni, \u03b1-Fe coated alumina microspheres by thermal reduction. It is possible to adjust metal coating thicknesses and fabricate a multilayer structured metal/ceramics, core-shell microspherical powder materials.",
"genre": "article",
"id": "sg:pub.10.1007/s11771-006-0100-y",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1381416",
"issn": [
"2095-2899",
"2227-5223"
],
"name": "Journal of Central South University",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "13"
}
],
"keywords": [
"alumina microspheres",
"thermal reduction",
"alumina micropowder",
"coating of Fe",
"heterogeneous precipitation",
"metal/ceramic",
"magnetic metal Ni",
"energy dispersive spectroscopy",
"metal coating thickness",
"resultant metal",
"metal salts",
"spherical precursor",
"Al2O3 micropowder",
"ray diffraction",
"powder materials",
"coating thickness",
"metal Ni",
"dispersive spectroscopy",
"ammonium bicarbonate",
"pH value",
"electron microscopy",
"micropowder",
"microspheres",
"precursors",
"Ni",
"Fe",
"nH2O",
"NiCO3",
"precipitation parameters",
"spectroscopy",
"reactants",
"diffraction",
"materials",
"Fe2O3",
"ceramics",
"coatings",
"salt",
"alumina",
"powder",
"metals",
"microscopy",
"agglomeration",
"precipitation",
"thickness",
"aggregation",
"reduction",
"parameters",
"concentration",
"bicarbonate",
"conditions",
"min",
"results",
"values",
"rate"
],
"name": "Coating of Fe, Ni on \u03b1-alumina microspheres by heterogeneous precipitation",
"pagination": "22-26",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1050146655"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11771-006-0100-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11771-006-0100-y",
"https://app.dimensions.ai/details/publication/pub.1050146655"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_426.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11771-006-0100-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11771-006-0100-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11771-006-0100-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11771-006-0100-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11771-006-0100-y'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
22 PREDICATES
82 URIs
71 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11771-006-0100-y | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N9b84a814d8594b87b573b0d4f36a8734 |
4 | ″ | schema:citation | sg:pub.10.1023/a:1008614514565 |
5 | ″ | ″ | sg:pub.10.1023/a:1017903332077 |
6 | ″ | ″ | sg:pub.10.1023/b:jmsl.0000005429.24974.e8 |
7 | ″ | schema:datePublished | 2006-02-01 |
8 | ″ | schema:datePublishedReg | 2006-02-01 |
9 | ″ | schema:description | The precursors with NiCO3 · 2Ni(OH)2 · 2H2O, Fe2O3 · nH2O coated alumina microspheres were prepared by the aqueous heterogeneous precipitation using metal salts, ammonium bicarbonate and α-Al2O3 micropowders as the starting materials. Magnetic metal Ni, α-Fe coated alumina, core-shell structural microspheres were successfully obtained by thermal reduction of the precursors at 700 °C for 2 h, respectively. Powders of the precursors and the resultant metal (Ni, α-Fe) coated alumina micropowders were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results show that optimized precipitation parameters are concentration of alumina micropowders of 15 g/L, rate of adding reactants of 5 mL/min and pH value of 7.5. And under the optimized conditions, the spherical precursors without aggregations or agglomerations are obtained, then transferred into Ni, α-Fe coated alumina microspheres by thermal reduction. It is possible to adjust metal coating thicknesses and fabricate a multilayer structured metal/ceramics, core-shell microspherical powder materials. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N6534737b3a494210b22fa4644ad2a250 |
14 | ″ | ″ | Nb88fa0de468846dd9c4c5990b1ee4422 |
15 | ″ | ″ | sg:journal.1381416 |
16 | ″ | schema:keywords | Al2O3 micropowder |
17 | ″ | ″ | Fe |
18 | ″ | ″ | Fe2O3 |
19 | ″ | ″ | Ni |
20 | ″ | ″ | NiCO3 |
21 | ″ | ″ | agglomeration |
22 | ″ | ″ | aggregation |
23 | ″ | ″ | alumina |
24 | ″ | ″ | alumina micropowder |
25 | ″ | ″ | alumina microspheres |
26 | ″ | ″ | ammonium bicarbonate |
27 | ″ | ″ | bicarbonate |
28 | ″ | ″ | ceramics |
29 | ″ | ″ | coating of Fe |
30 | ″ | ″ | coating thickness |
31 | ″ | ″ | coatings |
32 | ″ | ″ | concentration |
33 | ″ | ″ | conditions |
34 | ″ | ″ | diffraction |
35 | ″ | ″ | dispersive spectroscopy |
36 | ″ | ″ | electron microscopy |
37 | ″ | ″ | energy dispersive spectroscopy |
38 | ″ | ″ | heterogeneous precipitation |
39 | ″ | ″ | magnetic metal Ni |
40 | ″ | ″ | materials |
41 | ″ | ″ | metal Ni |
42 | ″ | ″ | metal coating thickness |
43 | ″ | ″ | metal salts |
44 | ″ | ″ | metal/ceramic |
45 | ″ | ″ | metals |
46 | ″ | ″ | micropowder |
47 | ″ | ″ | microscopy |
48 | ″ | ″ | microspheres |
49 | ″ | ″ | min |
50 | ″ | ″ | nH2O |
51 | ″ | ″ | pH value |
52 | ″ | ″ | parameters |
53 | ″ | ″ | powder |
54 | ″ | ″ | powder materials |
55 | ″ | ″ | precipitation |
56 | ″ | ″ | precipitation parameters |
57 | ″ | ″ | precursors |
58 | ″ | ″ | rate |
59 | ″ | ″ | ray diffraction |
60 | ″ | ″ | reactants |
61 | ″ | ″ | reduction |
62 | ″ | ″ | resultant metal |
63 | ″ | ″ | results |
64 | ″ | ″ | salt |
65 | ″ | ″ | spectroscopy |
66 | ″ | ″ | spherical precursor |
67 | ″ | ″ | thermal reduction |
68 | ″ | ″ | thickness |
69 | ″ | ″ | values |
70 | ″ | schema:name | Coating of Fe, Ni on α-alumina microspheres by heterogeneous precipitation |
71 | ″ | schema:pagination | 22-26 |
72 | ″ | schema:productId | N30a976aa49294967864917f5709584b7 |
73 | ″ | ″ | Nade5cfaa2abc4f64ba6e1bde10866822 |
74 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050146655 |
75 | ″ | ″ | https://doi.org/10.1007/s11771-006-0100-y |
76 | ″ | schema:sdDatePublished | 2022-05-20T07:23 |
77 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
78 | ″ | schema:sdPublisher | N91730e423a37421a87719075e4238288 |
79 | ″ | schema:url | https://doi.org/10.1007/s11771-006-0100-y |
80 | ″ | sgo:license | sg:explorer/license/ |
81 | ″ | sgo:sdDataset | articles |
82 | ″ | rdf:type | schema:ScholarlyArticle |
83 | N0c5b524c907349199f9315a849a3fbbc | rdf:first | sg:person.01162236364.13 |
84 | ″ | rdf:rest | Nb1c53ff5956c453e81f772cc07268796 |
85 | N1d083b479e964ac4aa4102e868a50c3b | rdf:first | sg:person.012573423245.18 |
86 | ″ | rdf:rest | N0c5b524c907349199f9315a849a3fbbc |
87 | N30a976aa49294967864917f5709584b7 | schema:name | doi |
88 | ″ | schema:value | 10.1007/s11771-006-0100-y |
89 | ″ | rdf:type | schema:PropertyValue |
90 | N6534737b3a494210b22fa4644ad2a250 | schema:volumeNumber | 13 |
91 | ″ | rdf:type | schema:PublicationVolume |
92 | N91730e423a37421a87719075e4238288 | schema:name | Springer Nature - SN SciGraph project |
93 | ″ | rdf:type | schema:Organization |
94 | N9b84a814d8594b87b573b0d4f36a8734 | rdf:first | sg:person.0601655670.06 |
95 | ″ | rdf:rest | N1d083b479e964ac4aa4102e868a50c3b |
96 | Nade5cfaa2abc4f64ba6e1bde10866822 | schema:name | dimensions_id |
97 | ″ | schema:value | pub.1050146655 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | Nb1c53ff5956c453e81f772cc07268796 | rdf:first | sg:person.012417254410.99 |
100 | ″ | rdf:rest | rdf:nil |
101 | Nb88fa0de468846dd9c4c5990b1ee4422 | schema:issueNumber | 1 |
102 | ″ | rdf:type | schema:PublicationIssue |
103 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Engineering |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Materials Engineering |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | sg:journal.1381416 | schema:issn | 2095-2899 |
110 | ″ | ″ | 2227-5223 |
111 | ″ | schema:name | Journal of Central South University |
112 | ″ | schema:publisher | Springer Nature |
113 | ″ | rdf:type | schema:Periodical |
114 | sg:person.01162236364.13 | schema:affiliation | grid-institutes:grid.440785.a |
115 | ″ | schema:familyName | Jing |
116 | ″ | schema:givenName | Mao-xiang |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.012417254410.99 | schema:affiliation | grid-institutes:None |
120 | ″ | schema:familyName | Li |
121 | ″ | schema:givenName | Wang-xing |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012417254410.99 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.012573423245.18 | schema:affiliation | grid-institutes:None |
125 | ″ | schema:familyName | Li |
126 | ″ | schema:givenName | Dong-hong |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012573423245.18 |
128 | ″ | rdf:type | schema:Person |
129 | sg:person.0601655670.06 | schema:affiliation | grid-institutes:grid.440785.a |
130 | ″ | schema:familyName | Shen |
131 | ″ | schema:givenName | Xiang-qian |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06 |
133 | ″ | rdf:type | schema:Person |
134 | sg:pub.10.1023/a:1008614514565 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043821420 |
135 | ″ | ″ | https://doi.org/10.1023/a:1008614514565 |
136 | ″ | rdf:type | schema:CreativeWork |
137 | sg:pub.10.1023/a:1017903332077 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002837165 |
138 | ″ | ″ | https://doi.org/10.1023/a:1017903332077 |
139 | ″ | rdf:type | schema:CreativeWork |
140 | sg:pub.10.1023/b:jmsl.0000005429.24974.e8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013703851 |
141 | ″ | ″ | https://doi.org/10.1023/b:jmsl.0000005429.24974.e8 |
142 | ″ | rdf:type | schema:CreativeWork |
143 | grid-institutes:None | schema:alternateName | Zhengzhou Research Institute, China Aluminum Corporation, 450041, Zhengzhou, China |
144 | ″ | schema:name | School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China |
145 | ″ | ″ | Zhengzhou Research Institute, China Aluminum Corporation, 450041, Zhengzhou, China |
146 | ″ | rdf:type | schema:Organization |
147 | grid-institutes:grid.440785.a | schema:alternateName | School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China |
148 | ″ | schema:name | School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China |
149 | ″ | rdf:type | schema:Organization |