Spatial-temporal Analysis of Daily Air Quality Index in the Yangtze River Delta Region of China During 2014 and 2016 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-28

AUTHORS

Lei Ye, Xiangjun Ou

ABSTRACT

Urban air pollution is a prominent problem related to the urban development in China, especially in the densely populated urban agglomerations. Therefore, scientific examination of regional variation of air quality and its dominant factors is of great importance to regional environmental management. In contrast to traditional air pollution researches which only concentrate on a single year or a single pollutant, this paper analyses spatiotemporal patterns and determinants of air quality in disparate regions based on the air quality index (AQI) of the Yangtze River Delta region (YRD) of China from 2014 to 2016. Results show that the annual average value of the AQI in the YRD region decreases from 2014 to 2016 and exhibit a basic characteristic of ‘higher in winter, lower in summer and slightly high in spring and autumn’. The attainment rate of the AQI shows an apparently spatial stratified heterogeneity, Hefei metropolitan area and Nanjing metropolitan area keeping the worst air quality. The frequency of air pollution occurring in large regions was gradually decreasing during the study period. Drawing from entropy method analysis, industrialization and urbanization represented by per capita GDP and total energy consumption were the most important factors. Furthermore, population agglomeration is a factor that cannot be ignored especially in some mega-cities. Limited to data collection, more research is needed to gain insight into the spatiotemporal pattern and influence mechanism in the future. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11769-019-1036-0

DOI

http://dx.doi.org/10.1007/s11769-019-1036-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112464992


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nantong University", 
          "id": "https://www.grid.ac/institutes/grid.260483.b", 
          "name": [
            "School of Geographic Science, Nantong University, 226000, Nantong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411857.e", 
          "name": [
            "School of Geography, Geomatics and Planning, Jiangsu Normal University, 221116, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ou", 
        "givenName": "Xiangjun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.envint.2011.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001650810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jes.2015.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004555491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1001-0742(11)60727-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006127716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2016.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007624422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-15-8381-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007643110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-016-2808-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010225257", 
          "https://doi.org/10.1007/s12517-016-2808-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-016-2808-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010225257", 
          "https://doi.org/10.1007/s12517-016-2808-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2014.09.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011109254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2005.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011976848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijerph9030781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020856289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1300018110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028977075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2014.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030281518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2012.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032358686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3182770237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035030873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3182770237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035030873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2014.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035498331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2010.08.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039540241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2008.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042981367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2015.10.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046566741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/143141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069491255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.04.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085040273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11852-017-0535-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090804466", 
          "https://doi.org/10.1007/s11852-017-0535-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11852-017-0535-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090804466", 
          "https://doi.org/10.1007/s11852-017-0535-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11869-017-0500-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091499656", 
          "https://doi.org/10.1007/s11869-017-0500-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11442-018-1491-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101677165", 
          "https://doi.org/10.1007/s11442-018-1491-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11442-018-1491-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101677165", 
          "https://doi.org/10.1007/s11442-018-1491-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11442-018-1491-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101677165", 
          "https://doi.org/10.1007/s11442-018-1491-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-28", 
    "datePublishedReg": "2019-02-28", 
    "description": "Urban air pollution is a prominent problem related to the urban development in China, especially in the densely populated urban agglomerations. Therefore, scientific examination of regional variation of air quality and its dominant factors is of great importance to regional environmental management. In contrast to traditional air pollution researches which only concentrate on a single year or a single pollutant, this paper analyses spatiotemporal patterns and determinants of air quality in disparate regions based on the air quality index (AQI) of the Yangtze River Delta region (YRD) of China from 2014 to 2016. Results show that the annual average value of the AQI in the YRD region decreases from 2014 to 2016 and exhibit a basic characteristic of \u2018higher in winter, lower in summer and slightly high in spring and autumn\u2019. The attainment rate of the AQI shows an apparently spatial stratified heterogeneity, Hefei metropolitan area and Nanjing metropolitan area keeping the worst air quality. The frequency of air pollution occurring in large regions was gradually decreasing during the study period. Drawing from entropy method analysis, industrialization and urbanization represented by per capita GDP and total energy consumption were the most important factors. Furthermore, population agglomeration is a factor that cannot be ignored especially in some mega-cities. Limited to data collection, more research is needed to gain insight into the spatiotemporal pattern and influence mechanism in the future.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11769-019-1036-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028731", 
        "issn": [
          "1002-0063", 
          "1993-064X"
        ], 
        "name": "Chinese Geographical Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Spatial-temporal Analysis of Daily Air Quality Index in the Yangtze River Delta Region of China During 2014 and 2016", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e581580d4da4c0a84e502ea46b008422b6a63885167a15f662ea568f8cf2821e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11769-019-1036-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112464992"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11769-019-1036-0", 
      "https://app.dimensions.ai/details/publication/pub.1112464992"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11769-019-1036-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1036-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1036-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1036-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1036-0'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      46 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11769-019-1036-0 schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author Nb7885f94597f4cc2988260fbed85ecaa
4 schema:citation sg:pub.10.1007/s11442-018-1491-z
5 sg:pub.10.1007/s11852-017-0535-3
6 sg:pub.10.1007/s11869-017-0500-1
7 sg:pub.10.1007/s12517-016-2808-9
8 https://doi.org/10.1016/j.atmosenv.2008.03.025
9 https://doi.org/10.1016/j.atmosenv.2010.08.053
10 https://doi.org/10.1016/j.atmosenv.2014.07.019
11 https://doi.org/10.1016/j.atmosenv.2014.09.072
12 https://doi.org/10.1016/j.atmosres.2005.11.003
13 https://doi.org/10.1016/j.envint.2011.03.003
14 https://doi.org/10.1016/j.envpol.2012.04.007
15 https://doi.org/10.1016/j.envpol.2014.07.022
16 https://doi.org/10.1016/j.envres.2016.09.008
17 https://doi.org/10.1016/j.jes.2015.12.001
18 https://doi.org/10.1016/j.scitotenv.2015.10.133
19 https://doi.org/10.1016/j.scitotenv.2017.04.106
20 https://doi.org/10.1016/s1001-0742(11)60727-4
21 https://doi.org/10.1073/pnas.1300018110
22 https://doi.org/10.1097/ede.0b013e3182770237
23 https://doi.org/10.2307/143141
24 https://doi.org/10.3390/ijerph9030781
25 https://doi.org/10.5194/acp-15-8381-2015
26 schema:datePublished 2019-02-28
27 schema:datePublishedReg 2019-02-28
28 schema:description Urban air pollution is a prominent problem related to the urban development in China, especially in the densely populated urban agglomerations. Therefore, scientific examination of regional variation of air quality and its dominant factors is of great importance to regional environmental management. In contrast to traditional air pollution researches which only concentrate on a single year or a single pollutant, this paper analyses spatiotemporal patterns and determinants of air quality in disparate regions based on the air quality index (AQI) of the Yangtze River Delta region (YRD) of China from 2014 to 2016. Results show that the annual average value of the AQI in the YRD region decreases from 2014 to 2016 and exhibit a basic characteristic of ‘higher in winter, lower in summer and slightly high in spring and autumn’. The attainment rate of the AQI shows an apparently spatial stratified heterogeneity, Hefei metropolitan area and Nanjing metropolitan area keeping the worst air quality. The frequency of air pollution occurring in large regions was gradually decreasing during the study period. Drawing from entropy method analysis, industrialization and urbanization represented by per capita GDP and total energy consumption were the most important factors. Furthermore, population agglomeration is a factor that cannot be ignored especially in some mega-cities. Limited to data collection, more research is needed to gain insight into the spatiotemporal pattern and influence mechanism in the future.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1028731
33 schema:name Spatial-temporal Analysis of Daily Air Quality Index in the Yangtze River Delta Region of China During 2014 and 2016
34 schema:pagination 1-12
35 schema:productId N545b9bde3f7c4850bf77559c4404b441
36 N7f9646d685484dc590842170dae67527
37 Nac7587b870034494b3d837424b26dfbf
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112464992
39 https://doi.org/10.1007/s11769-019-1036-0
40 schema:sdDatePublished 2019-04-11T10:27
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N13cdb8eac84c4ab1b508075816cb0fb8
43 schema:url https://link.springer.com/10.1007%2Fs11769-019-1036-0
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N13cdb8eac84c4ab1b508075816cb0fb8 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N545b9bde3f7c4850bf77559c4404b441 schema:name doi
50 schema:value 10.1007/s11769-019-1036-0
51 rdf:type schema:PropertyValue
52 N5fa76130b2214aca88a7ec5b73dbad5f schema:affiliation https://www.grid.ac/institutes/grid.411857.e
53 schema:familyName Ou
54 schema:givenName Xiangjun
55 rdf:type schema:Person
56 N6be545d3d09a4f559457c77936d80ddd rdf:first N5fa76130b2214aca88a7ec5b73dbad5f
57 rdf:rest rdf:nil
58 N7f9646d685484dc590842170dae67527 schema:name dimensions_id
59 schema:value pub.1112464992
60 rdf:type schema:PropertyValue
61 Nac7587b870034494b3d837424b26dfbf schema:name readcube_id
62 schema:value e581580d4da4c0a84e502ea46b008422b6a63885167a15f662ea568f8cf2821e
63 rdf:type schema:PropertyValue
64 Nb7885f94597f4cc2988260fbed85ecaa rdf:first Nda17341e668f48f09c728a31eb428319
65 rdf:rest N6be545d3d09a4f559457c77936d80ddd
66 Nda17341e668f48f09c728a31eb428319 schema:affiliation https://www.grid.ac/institutes/grid.260483.b
67 schema:familyName Ye
68 schema:givenName Lei
69 rdf:type schema:Person
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
74 schema:name Environmental Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1028731 schema:issn 1002-0063
77 1993-064X
78 schema:name Chinese Geographical Science
79 rdf:type schema:Periodical
80 sg:pub.10.1007/s11442-018-1491-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101677165
81 https://doi.org/10.1007/s11442-018-1491-z
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s11852-017-0535-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090804466
84 https://doi.org/10.1007/s11852-017-0535-3
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s11869-017-0500-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091499656
87 https://doi.org/10.1007/s11869-017-0500-1
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s12517-016-2808-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010225257
90 https://doi.org/10.1007/s12517-016-2808-9
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.atmosenv.2008.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042981367
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.atmosenv.2010.08.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039540241
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.atmosenv.2014.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035498331
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.atmosenv.2014.09.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011109254
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.atmosres.2005.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011976848
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.envint.2011.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001650810
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.envpol.2012.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032358686
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.envpol.2014.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030281518
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.envres.2016.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007624422
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jes.2015.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004555491
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.scitotenv.2015.10.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046566741
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.scitotenv.2017.04.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085040273
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s1001-0742(11)60727-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006127716
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1073/pnas.1300018110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028977075
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1097/ede.0b013e3182770237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035030873
121 rdf:type schema:CreativeWork
122 https://doi.org/10.2307/143141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069491255
123 rdf:type schema:CreativeWork
124 https://doi.org/10.3390/ijerph9030781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020856289
125 rdf:type schema:CreativeWork
126 https://doi.org/10.5194/acp-15-8381-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007643110
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.260483.b schema:alternateName Nantong University
129 schema:name School of Geographic Science, Nantong University, 226000, Nantong, China
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.411857.e schema:alternateName Jiangsu Normal University
132 schema:name School of Geography, Geomatics and Planning, Jiangsu Normal University, 221116, Nanjing, China
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...