Spatio-temporal Characteristics and Geographical Determinants of Air Quality in Cities at the Prefecture Level and Above in China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Zhe Sun, Dongsheng Zhan, Fengjun Jin

ABSTRACT

In recent years, the large scale and frequency of severe air pollution in China has become an important consideration in the construction of livable cities and the physical and mental health of urban residents. Based on the 2016-year urban air quality index (AQI) data published by the Ministry of Environmental Protection of China, this study analyzed the spatial and temporal characteristics of air quality and its influencing factors in 338 urban units nationwide. The analysis provides an effective scientific basis for formulating national air pollution control measures. Four key results are shown. 1) Generally, air quality in the 338 cities is poor, and the average annual values for urban AQI and air pollution in 2016 were 79.58% and 21.22%, respectively. 2) The air quality index presents seasonal changes, with winter > spring > autumn > summer and a u-shaped trend. 3) The spatial distribution of the urban air quality index shows clear north-south characteristic differences and a spatial agglomeration effect; the high value area of air pollution is mainly concentrated in the North China Plain and Xinjiang Uygur Autonomous Region. 4) An evaluation of the spatial econometric model shows that differences in urban air quality are due to social, economic, and natural factors. More... »

PAGES

316-324

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11769-019-1031-5

DOI

http://dx.doi.org/10.1007/s11769-019-1031-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112504461


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Zhe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhan", 
        "givenName": "Dongsheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Geographic Sciences and Natural Resources Research", 
          "id": "https://www.grid.ac/institutes/grid.424975.9", 
          "name": [
            "Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Fengjun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.envpol.2016.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002732708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1409481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021977831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2014.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030170686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2014.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035498331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cities.2015.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039666740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0063486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046269755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijerph121215029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050106909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5814/j.issn.1674-764x.2016.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052756260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079064573", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In recent years, the large scale and frequency of severe air pollution in China has become an important consideration in the construction of livable cities and the physical and mental health of urban residents. Based on the 2016-year urban air quality index (AQI) data published by the Ministry of Environmental Protection of China, this study analyzed the spatial and temporal characteristics of air quality and its influencing factors in 338 urban units nationwide. The analysis provides an effective scientific basis for formulating national air pollution control measures. Four key results are shown. 1) Generally, air quality in the 338 cities is poor, and the average annual values for urban AQI and air pollution in 2016 were 79.58% and 21.22%, respectively. 2) The air quality index presents seasonal changes, with winter > spring > autumn > summer and a u-shaped trend. 3) The spatial distribution of the urban air quality index shows clear north-south characteristic differences and a spatial agglomeration effect; the high value area of air pollution is mainly concentrated in the North China Plain and Xinjiang Uygur Autonomous Region. 4) An evaluation of the spatial econometric model shows that differences in urban air quality are due to social, economic, and natural factors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11769-019-1031-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028731", 
        "issn": [
          "1002-0063", 
          "1993-064X"
        ], 
        "name": "Chinese Geographical Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Spatio-temporal Characteristics and Geographical Determinants of Air Quality in Cities at the Prefecture Level and Above in China", 
    "pagination": "316-324", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "542816aa32b606212c030b29b1328bff0ead031ad305e71d82a0328e2ba37119"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11769-019-1031-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112504461"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11769-019-1031-5", 
      "https://app.dimensions.ai/details/publication/pub.1112504461"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77545_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11769-019-1031-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1031-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1031-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1031-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1031-5'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11769-019-1031-5 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Nc362270467b84a85b191b039043f3246
4 schema:citation https://app.dimensions.ai/details/publication/pub.1079064573
5 https://doi.org/10.1016/j.atmosenv.2014.07.019
6 https://doi.org/10.1016/j.cities.2015.08.012
7 https://doi.org/10.1016/j.envint.2014.08.016
8 https://doi.org/10.1016/j.envpol.2016.06.009
9 https://doi.org/10.1289/ehp.1409481
10 https://doi.org/10.1371/journal.pone.0063486
11 https://doi.org/10.3390/ijerph121215029
12 https://doi.org/10.5814/j.issn.1674-764x.2016.02.001
13 schema:datePublished 2019-04
14 schema:datePublishedReg 2019-04-01
15 schema:description In recent years, the large scale and frequency of severe air pollution in China has become an important consideration in the construction of livable cities and the physical and mental health of urban residents. Based on the 2016-year urban air quality index (AQI) data published by the Ministry of Environmental Protection of China, this study analyzed the spatial and temporal characteristics of air quality and its influencing factors in 338 urban units nationwide. The analysis provides an effective scientific basis for formulating national air pollution control measures. Four key results are shown. 1) Generally, air quality in the 338 cities is poor, and the average annual values for urban AQI and air pollution in 2016 were 79.58% and 21.22%, respectively. 2) The air quality index presents seasonal changes, with winter > spring > autumn > summer and a u-shaped trend. 3) The spatial distribution of the urban air quality index shows clear north-south characteristic differences and a spatial agglomeration effect; the high value area of air pollution is mainly concentrated in the North China Plain and Xinjiang Uygur Autonomous Region. 4) An evaluation of the spatial econometric model shows that differences in urban air quality are due to social, economic, and natural factors.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N6b92c34247f84435a701b4b3c61fcb7f
20 N974c2e4f24b048e2915aecd3fde41ab1
21 sg:journal.1028731
22 schema:name Spatio-temporal Characteristics and Geographical Determinants of Air Quality in Cities at the Prefecture Level and Above in China
23 schema:pagination 316-324
24 schema:productId Na4a2aa2a5bef48c4b979e2b205d8563a
25 Na9884048eff148b4a8539ad54557325e
26 Nb5f003e0e08a41a490f0316e0d6a25b8
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504461
28 https://doi.org/10.1007/s11769-019-1031-5
29 schema:sdDatePublished 2019-04-11T10:48
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N5688bce419f445d1a4d442135408f834
32 schema:url https://link.springer.com/10.1007%2Fs11769-019-1031-5
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N073b34f8584f4bedb24eb2357d69faba rdf:first Nbfe830eed0264a828b1e952c7bb77e3b
37 rdf:rest N75b3f48381b44c8997e986abbcbe006f
38 N5688bce419f445d1a4d442135408f834 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N6b92c34247f84435a701b4b3c61fcb7f schema:volumeNumber 29
41 rdf:type schema:PublicationVolume
42 N75b3f48381b44c8997e986abbcbe006f rdf:first Nb9a3a8703612439aa65b8f1af5a5a936
43 rdf:rest rdf:nil
44 N974c2e4f24b048e2915aecd3fde41ab1 schema:issueNumber 2
45 rdf:type schema:PublicationIssue
46 Na4a2aa2a5bef48c4b979e2b205d8563a schema:name dimensions_id
47 schema:value pub.1112504461
48 rdf:type schema:PropertyValue
49 Na9884048eff148b4a8539ad54557325e schema:name doi
50 schema:value 10.1007/s11769-019-1031-5
51 rdf:type schema:PropertyValue
52 Nb5f003e0e08a41a490f0316e0d6a25b8 schema:name readcube_id
53 schema:value 542816aa32b606212c030b29b1328bff0ead031ad305e71d82a0328e2ba37119
54 rdf:type schema:PropertyValue
55 Nb9a3a8703612439aa65b8f1af5a5a936 schema:affiliation https://www.grid.ac/institutes/grid.424975.9
56 schema:familyName Jin
57 schema:givenName Fengjun
58 rdf:type schema:Person
59 Nbfe830eed0264a828b1e952c7bb77e3b schema:affiliation https://www.grid.ac/institutes/grid.410726.6
60 schema:familyName Zhan
61 schema:givenName Dongsheng
62 rdf:type schema:Person
63 Nc362270467b84a85b191b039043f3246 rdf:first Ne91a517c76bb4d598ab4e2780e16e760
64 rdf:rest N073b34f8584f4bedb24eb2357d69faba
65 Ne91a517c76bb4d598ab4e2780e16e760 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
66 schema:familyName Sun
67 schema:givenName Zhe
68 rdf:type schema:Person
69 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
70 schema:name Medical and Health Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
73 schema:name Public Health and Health Services
74 rdf:type schema:DefinedTerm
75 sg:journal.1028731 schema:issn 1002-0063
76 1993-064X
77 schema:name Chinese Geographical Science
78 rdf:type schema:Periodical
79 https://app.dimensions.ai/details/publication/pub.1079064573 schema:CreativeWork
80 https://doi.org/10.1016/j.atmosenv.2014.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035498331
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.cities.2015.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039666740
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.envint.2014.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170686
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.envpol.2016.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002732708
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1289/ehp.1409481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021977831
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1371/journal.pone.0063486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046269755
91 rdf:type schema:CreativeWork
92 https://doi.org/10.3390/ijerph121215029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050106909
93 rdf:type schema:CreativeWork
94 https://doi.org/10.5814/j.issn.1674-764x.2016.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052756260
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
97 schema:name Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
98 University of Chinese Academy of Sciences, 100049, Beijing, China
99 rdf:type schema:Organization
100 https://www.grid.ac/institutes/grid.424975.9 schema:alternateName Institute of Geographic Sciences and Natural Resources Research
101 schema:name Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...