Changes in Global Cloud Cover Based on Remote Sensing Data from 2003 to 2012 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Kebiao Mao, Zijin Yuan, Zhiyuan Zuo, Tongren Xu, Xinyi Shen, Chunyu Gao

ABSTRACT

As is well known, clouds impact the radiative budget, climate change, hydrological processes, and the global carbon, nitrogen and sulfur cycles. To understand the wide-ranging effects of clouds, it is necessary to assess changes in cloud cover at high spatial and temporal resolution. In this study, we calculate global cloud cover during the day and at night using cloud products estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Results indicate that the global mean cloud cover from 2003 to 2012 was 66%. Moreover, global cloud cover increased over this recent decade. Specifically, cloud cover over land areas (especially North America, Antarctica, and Europe) decreased (slope =–0.001, R2 = 0.5254), whereas cloud cover over ocean areas (especially the Indian and Pacific Oceans) increased (slope = 0.0011, R2 = 0.4955). Cloud cover is relatively high between the latitudes of 36°S and 68°S compared to other regions, and cloud cover is lowest over Oceania and Antarctica. The highest rates of increase occurred over Southeast Asia and Oceania, whereas the highest rates of decrease occurred over Antarctica and North America. The global distribution of cloud cover regulates global temperature change, and the trends of these two variables over the 10-year period examined in this study (2003–2012) oppose one another in some regions. These findings are very important for studies of global climate change. More... »

PAGES

306-315

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11769-019-1030-6

DOI

http://dx.doi.org/10.1007/s11769-019-1030-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112504694


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China", 
            "State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth Research, Chinese Academy of Science and Beijing Normal University, 100086, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mao", 
        "givenName": "Kebiao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Agricultural Resources and Regional Planning", 
          "id": "https://www.grid.ac/institutes/grid.464330.6", 
          "name": [
            "National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Zijin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Agricultural Resources and Regional Planning", 
          "id": "https://www.grid.ac/institutes/grid.464330.6", 
          "name": [
            "National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuo", 
        "givenName": "Zhiyuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth Research, Chinese Academy of Science and Beijing Normal University, 100086, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Tongren", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oklahoma", 
          "id": "https://www.grid.ac/institutes/grid.266900.b", 
          "name": [
            "Hydrometeorology and Remote Sensing Laboratory, University of Oklahoma, 73072, Norman, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Xinyi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Agricultural Resources and Regional Planning", 
          "id": "https://www.grid.ac/institutes/grid.464330.6", 
          "name": [
            "National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Chunyu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0442(1999)012<1864:otapai>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001767661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jtech-d-13-00245.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005671180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1101766108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006546824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1995)052<4231:sotmcf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020254849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jtech-d-15-0063.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022628918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013gl058405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023490059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11769-017-0841-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023971864", 
          "https://doi.org/10.1007/s11769-017-0841-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11769-017-0841-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023971864", 
          "https://doi.org/10.1007/s11769-017-0841-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2016.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030443436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1998jd200032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042990135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jtecha1052.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048883565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2002.808301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061608730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1182488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1182488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.003931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065187276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2017.12.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100726609"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "As is well known, clouds impact the radiative budget, climate change, hydrological processes, and the global carbon, nitrogen and sulfur cycles. To understand the wide-ranging effects of clouds, it is necessary to assess changes in cloud cover at high spatial and temporal resolution. In this study, we calculate global cloud cover during the day and at night using cloud products estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Results indicate that the global mean cloud cover from 2003 to 2012 was 66%. Moreover, global cloud cover increased over this recent decade. Specifically, cloud cover over land areas (especially North America, Antarctica, and Europe) decreased (slope =\u20130.001, R2 = 0.5254), whereas cloud cover over ocean areas (especially the Indian and Pacific Oceans) increased (slope = 0.0011, R2 = 0.4955). Cloud cover is relatively high between the latitudes of 36\u00b0S and 68\u00b0S compared to other regions, and cloud cover is lowest over Oceania and Antarctica. The highest rates of increase occurred over Southeast Asia and Oceania, whereas the highest rates of decrease occurred over Antarctica and North America. The global distribution of cloud cover regulates global temperature change, and the trends of these two variables over the 10-year period examined in this study (2003\u20132012) oppose one another in some regions. These findings are very important for studies of global climate change.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11769-019-1030-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028731", 
        "issn": [
          "1002-0063", 
          "1993-064X"
        ], 
        "name": "Chinese Geographical Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Changes in Global Cloud Cover Based on Remote Sensing Data from 2003 to 2012", 
    "pagination": "306-315", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8517f52d01194ed8509f1be092d7d9dcb3a8e7966997b94212d835f1330031b6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11769-019-1030-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112504694"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11769-019-1030-6", 
      "https://app.dimensions.ai/details/publication/pub.1112504694"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77581_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11769-019-1030-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1030-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1030-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1030-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1030-6'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11769-019-1030-6 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nfbfe64f5d93240a7930bea80f9f8c81d
4 schema:citation sg:pub.10.1007/s11769-017-0841-6
5 https://doi.org/10.1002/2013gl058405
6 https://doi.org/10.1016/j.asr.2016.11.007
7 https://doi.org/10.1016/j.rse.2017.12.040
8 https://doi.org/10.1029/1998jd200032
9 https://doi.org/10.1073/pnas.1101766108
10 https://doi.org/10.1109/tgrs.2002.808301
11 https://doi.org/10.1126/science.1182488
12 https://doi.org/10.1175/1520-0442(1999)012<1864:otapai>2.0.co;2
13 https://doi.org/10.1175/1520-0469(1995)052<4231:sotmcf>2.0.co;2
14 https://doi.org/10.1175/2008jtecha1052.1
15 https://doi.org/10.1175/jtech-d-13-00245.1
16 https://doi.org/10.1175/jtech-d-15-0063.1
17 https://doi.org/10.1364/oe.16.003931
18 schema:datePublished 2019-04
19 schema:datePublishedReg 2019-04-01
20 schema:description As is well known, clouds impact the radiative budget, climate change, hydrological processes, and the global carbon, nitrogen and sulfur cycles. To understand the wide-ranging effects of clouds, it is necessary to assess changes in cloud cover at high spatial and temporal resolution. In this study, we calculate global cloud cover during the day and at night using cloud products estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Results indicate that the global mean cloud cover from 2003 to 2012 was 66%. Moreover, global cloud cover increased over this recent decade. Specifically, cloud cover over land areas (especially North America, Antarctica, and Europe) decreased (slope =–0.001, R2 = 0.5254), whereas cloud cover over ocean areas (especially the Indian and Pacific Oceans) increased (slope = 0.0011, R2 = 0.4955). Cloud cover is relatively high between the latitudes of 36°S and 68°S compared to other regions, and cloud cover is lowest over Oceania and Antarctica. The highest rates of increase occurred over Southeast Asia and Oceania, whereas the highest rates of decrease occurred over Antarctica and North America. The global distribution of cloud cover regulates global temperature change, and the trends of these two variables over the 10-year period examined in this study (2003–2012) oppose one another in some regions. These findings are very important for studies of global climate change.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N240f2f6711ff4c70ae4e4317a2e72310
25 N963c4c7a7123471bbed5af81d01e3363
26 sg:journal.1028731
27 schema:name Changes in Global Cloud Cover Based on Remote Sensing Data from 2003 to 2012
28 schema:pagination 306-315
29 schema:productId N5f8cef8641d846338a7d02489b4303a3
30 N70b3f3518a01440fb6f48f25cabc2790
31 Nccf82bf4bb354a00aa57f60bd2a469bf
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504694
33 https://doi.org/10.1007/s11769-019-1030-6
34 schema:sdDatePublished 2019-04-11T10:50
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N7a0fc73e4bf749c786bf2b7549e4753f
37 schema:url https://link.springer.com/10.1007%2Fs11769-019-1030-6
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N078b9544a5a34984a8c591773e88ad22 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
42 schema:familyName Mao
43 schema:givenName Kebiao
44 rdf:type schema:Person
45 N1dabd99f812649b1b2448375f7117620 rdf:first N9111a6984d6d4306820c5050dfdcc143
46 rdf:rest N8291d7e0c7714b978ecd8c1e7b559f81
47 N240f2f6711ff4c70ae4e4317a2e72310 schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 N2e2e99f015814d9bbc32c0d684190c94 rdf:first Nc11f01ef0a2e461bb2ede767f8034621
50 rdf:rest Nb00f54a85602408083d11fd74358c81c
51 N3c6e670317ab476c8f991c2ed72760da schema:affiliation https://www.grid.ac/institutes/grid.464330.6
52 schema:familyName Zuo
53 schema:givenName Zhiyuan
54 rdf:type schema:Person
55 N554d7c592edc4d20a51e5fd14fc342b3 schema:affiliation https://www.grid.ac/institutes/grid.464330.6
56 schema:familyName Gao
57 schema:givenName Chunyu
58 rdf:type schema:Person
59 N5a789272d0204db3aa371848fd26c406 rdf:first N554d7c592edc4d20a51e5fd14fc342b3
60 rdf:rest rdf:nil
61 N5f8cef8641d846338a7d02489b4303a3 schema:name dimensions_id
62 schema:value pub.1112504694
63 rdf:type schema:PropertyValue
64 N6012d76d2da8417091baf6a8cf35e8da schema:affiliation https://www.grid.ac/institutes/grid.266900.b
65 schema:familyName Shen
66 schema:givenName Xinyi
67 rdf:type schema:Person
68 N70b3f3518a01440fb6f48f25cabc2790 schema:name doi
69 schema:value 10.1007/s11769-019-1030-6
70 rdf:type schema:PropertyValue
71 N7a0fc73e4bf749c786bf2b7549e4753f schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N8291d7e0c7714b978ecd8c1e7b559f81 rdf:first N3c6e670317ab476c8f991c2ed72760da
74 rdf:rest N2e2e99f015814d9bbc32c0d684190c94
75 N9111a6984d6d4306820c5050dfdcc143 schema:affiliation https://www.grid.ac/institutes/grid.464330.6
76 schema:familyName Yuan
77 schema:givenName Zijin
78 rdf:type schema:Person
79 N963c4c7a7123471bbed5af81d01e3363 schema:volumeNumber 29
80 rdf:type schema:PublicationVolume
81 Nb00f54a85602408083d11fd74358c81c rdf:first N6012d76d2da8417091baf6a8cf35e8da
82 rdf:rest N5a789272d0204db3aa371848fd26c406
83 Nc11f01ef0a2e461bb2ede767f8034621 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
84 schema:familyName Xu
85 schema:givenName Tongren
86 rdf:type schema:Person
87 Nccf82bf4bb354a00aa57f60bd2a469bf schema:name readcube_id
88 schema:value 8517f52d01194ed8509f1be092d7d9dcb3a8e7966997b94212d835f1330031b6
89 rdf:type schema:PropertyValue
90 Nfbfe64f5d93240a7930bea80f9f8c81d rdf:first N078b9544a5a34984a8c591773e88ad22
91 rdf:rest N1dabd99f812649b1b2448375f7117620
92 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
93 schema:name Earth Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
96 schema:name Atmospheric Sciences
97 rdf:type schema:DefinedTerm
98 sg:journal.1028731 schema:issn 1002-0063
99 1993-064X
100 schema:name Chinese Geographical Science
101 rdf:type schema:Periodical
102 sg:pub.10.1007/s11769-017-0841-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023971864
103 https://doi.org/10.1007/s11769-017-0841-6
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/2013gl058405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023490059
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.asr.2016.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030443436
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.rse.2017.12.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100726609
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1029/1998jd200032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042990135
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1073/pnas.1101766108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006546824
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tgrs.2002.808301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061608730
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1126/science.1182488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461277
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1175/1520-0442(1999)012<1864:otapai>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001767661
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1175/1520-0469(1995)052<4231:sotmcf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020254849
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1175/2008jtecha1052.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048883565
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1175/jtech-d-13-00245.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005671180
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1175/jtech-d-15-0063.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022628918
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1364/oe.16.003931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065187276
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.266900.b schema:alternateName University of Oklahoma
132 schema:name Hydrometeorology and Remote Sensing Laboratory, University of Oklahoma, 73072, Norman, USA
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.464330.6 schema:alternateName Institute of Agricultural Resources and Regional Planning
135 schema:name National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.484663.b schema:alternateName State Key Laboratory of Remote Sensing Science
138 schema:name National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
139 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth Research, Chinese Academy of Science and Beijing Normal University, 100086, Beijing, China
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...