Life-cycle CO2 Emissions and Their Driving Factors in Construction Sector in China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Can Cui, Zhen Wang, Guoshu Bin

ABSTRACT

As the construction sector is a major energy consumer and thus a significant contributor of CO2 emissions in China, it is important to consider carbon reduction in this industry. This study analyzed six life-cycle stages and calculated the life-cycle CO2 emissions of the construction sector in 30 Chinese provincial jurisdictions to understand the disparity among them. Results show that building materials production was the key stage for carbon reduction in the construction sector, followed by the building operation stage. External variables, e.g., economic growth, industrial structure, urbanization, price fluctuation, and marketization, were significantly correlated with the emission intensity of the construction sector. Specifically, economic growth exhibited an inverted U-shaped relation with CO2 emissions per capita and per area during the period examined. Secondary industry and land urbanization were negatively correlated with CO2 emission intensity indicators from the construction sector, whereas tertiary industry and urbanization were positively correlated. Price indices and marketization had negative effects on CO2 emission intensity. The policy implications of our findings are that cleaner technologies should be encouraged for cement providers, and green purchasing rules for the construction sector should also be established. Pricing tools (e.g., resource taxes) could help to adjust the demand for raw materials and energy. More... »

PAGES

293-305

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11769-019-1029-z

DOI

http://dx.doi.org/10.1007/s11769-019-1029-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112505139


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Can", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guilin University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.440725.0", 
          "name": [
            "College of Civil Engineering and Architecture, Guilin University of Technology, 541004, Guilin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bin", 
        "givenName": "Guoshu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.buildenv.2015.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000169459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2016.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007726739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2015.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010832508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11294-014-9511-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011092936", 
          "https://doi.org/10.1007/s11294-014-9511-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2015.01.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012134464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2016.02.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014762346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolecon.2004.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015282101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.habitatint.2014.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015816579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2013.06.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016024338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2015.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018304126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2015.05.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025854495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2014.01.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026652471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-2727(94)01449-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032203819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2010.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034328109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2012.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036107302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2011.05.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036297329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2015.12.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038062021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2016.09.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040500214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2016.09.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040500214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eneco.2013.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047634906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2009.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052360099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trd.2016.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053259875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.524-527.2595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072023615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0022185616673685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083746103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0022185616673685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083746103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2017.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085405701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2017.06.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086034842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5455/elet.2017.4.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090510015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2017.09.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091502982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15244/pjoes/70894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092026347"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "As the construction sector is a major energy consumer and thus a significant contributor of CO2 emissions in China, it is important to consider carbon reduction in this industry. This study analyzed six life-cycle stages and calculated the life-cycle CO2 emissions of the construction sector in 30 Chinese provincial jurisdictions to understand the disparity among them. Results show that building materials production was the key stage for carbon reduction in the construction sector, followed by the building operation stage. External variables, e.g., economic growth, industrial structure, urbanization, price fluctuation, and marketization, were significantly correlated with the emission intensity of the construction sector. Specifically, economic growth exhibited an inverted U-shaped relation with CO2 emissions per capita and per area during the period examined. Secondary industry and land urbanization were negatively correlated with CO2 emission intensity indicators from the construction sector, whereas tertiary industry and urbanization were positively correlated. Price indices and marketization had negative effects on CO2 emission intensity. The policy implications of our findings are that cleaner technologies should be encouraged for cement providers, and green purchasing rules for the construction sector should also be established. Pricing tools (e.g., resource taxes) could help to adjust the demand for raw materials and energy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11769-019-1029-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028731", 
        "issn": [
          "1002-0063", 
          "1993-064X"
        ], 
        "name": "Chinese Geographical Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Life-cycle CO2 Emissions and Their Driving Factors in Construction Sector in China", 
    "pagination": "293-305", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd25c98f5dd39117cdc488b3116d01a5a82e9f1b13e3564f44b5131bd2d6806b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11769-019-1029-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112505139"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11769-019-1029-z", 
      "https://app.dimensions.ai/details/publication/pub.1112505139"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77564_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11769-019-1029-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1029-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1029-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1029-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1029-z'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11769-019-1029-z schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N0dcd2f832483484bba345596f448055b
4 schema:citation sg:pub.10.1007/s11294-014-9511-y
5 https://doi.org/10.1016/0047-2727(94)01449-x
6 https://doi.org/10.1016/j.apenergy.2011.05.055
7 https://doi.org/10.1016/j.apenergy.2015.01.126
8 https://doi.org/10.1016/j.apenergy.2015.05.104
9 https://doi.org/10.1016/j.buildenv.2009.09.014
10 https://doi.org/10.1016/j.buildenv.2012.02.005
11 https://doi.org/10.1016/j.buildenv.2015.08.013
12 https://doi.org/10.1016/j.buildenv.2015.09.011
13 https://doi.org/10.1016/j.buildenv.2016.05.018
14 https://doi.org/10.1016/j.ecolecon.2004.02.011
15 https://doi.org/10.1016/j.ecolind.2017.05.013
16 https://doi.org/10.1016/j.enbuild.2010.09.005
17 https://doi.org/10.1016/j.enbuild.2015.12.026
18 https://doi.org/10.1016/j.eneco.2013.10.015
19 https://doi.org/10.1016/j.energy.2015.12.041
20 https://doi.org/10.1016/j.energy.2016.02.151
21 https://doi.org/10.1016/j.enpol.2013.06.043
22 https://doi.org/10.1016/j.habitatint.2014.09.008
23 https://doi.org/10.1016/j.jclepro.2014.01.083
24 https://doi.org/10.1016/j.jclepro.2016.09.119
25 https://doi.org/10.1016/j.jclepro.2017.06.075
26 https://doi.org/10.1016/j.jclepro.2017.09.072
27 https://doi.org/10.1016/j.trd.2016.04.015
28 https://doi.org/10.1177/0022185616673685
29 https://doi.org/10.15244/pjoes/70894
30 https://doi.org/10.4028/www.scientific.net/amr.524-527.2595
31 https://doi.org/10.5455/elet.2017.4.1.1
32 schema:datePublished 2019-04
33 schema:datePublishedReg 2019-04-01
34 schema:description As the construction sector is a major energy consumer and thus a significant contributor of CO2 emissions in China, it is important to consider carbon reduction in this industry. This study analyzed six life-cycle stages and calculated the life-cycle CO2 emissions of the construction sector in 30 Chinese provincial jurisdictions to understand the disparity among them. Results show that building materials production was the key stage for carbon reduction in the construction sector, followed by the building operation stage. External variables, e.g., economic growth, industrial structure, urbanization, price fluctuation, and marketization, were significantly correlated with the emission intensity of the construction sector. Specifically, economic growth exhibited an inverted U-shaped relation with CO2 emissions per capita and per area during the period examined. Secondary industry and land urbanization were negatively correlated with CO2 emission intensity indicators from the construction sector, whereas tertiary industry and urbanization were positively correlated. Price indices and marketization had negative effects on CO2 emission intensity. The policy implications of our findings are that cleaner technologies should be encouraged for cement providers, and green purchasing rules for the construction sector should also be established. Pricing tools (e.g., resource taxes) could help to adjust the demand for raw materials and energy.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N05eb4cc39d3e4ede8e1c09c37343599f
39 N916f1cecbe894612a18324d799cd8812
40 sg:journal.1028731
41 schema:name Life-cycle CO2 Emissions and Their Driving Factors in Construction Sector in China
42 schema:pagination 293-305
43 schema:productId N37a213d3bf274240a9c598108a03d85d
44 Nc14919561b8e4ae791873938b0f1c85f
45 Nd639e7f00ffc4fca9310b5c2bfd7aba6
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112505139
47 https://doi.org/10.1007/s11769-019-1029-z
48 schema:sdDatePublished 2019-04-11T10:49
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N0d327ff9ef3545459989442dc83b35ba
51 schema:url https://link.springer.com/10.1007%2Fs11769-019-1029-z
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N05eb4cc39d3e4ede8e1c09c37343599f schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 N0d327ff9ef3545459989442dc83b35ba schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N0dcd2f832483484bba345596f448055b rdf:first Nc81df4affe914c8f9d21e3e89b5cd765
60 rdf:rest Nf7f7f0f535e9453ea2095d3f86a1325f
61 N37a213d3bf274240a9c598108a03d85d schema:name readcube_id
62 schema:value dd25c98f5dd39117cdc488b3116d01a5a82e9f1b13e3564f44b5131bd2d6806b
63 rdf:type schema:PropertyValue
64 N5b6588bbf05e422fad595653be770214 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
65 schema:familyName Wang
66 schema:givenName Zhen
67 rdf:type schema:Person
68 N8ce0f819a3bd4a9bb40b83ecfb019da9 rdf:first N8ff29267276a41c088086a1b65efebee
69 rdf:rest rdf:nil
70 N8ff29267276a41c088086a1b65efebee schema:affiliation https://www.grid.ac/institutes/grid.440725.0
71 schema:familyName Bin
72 schema:givenName Guoshu
73 rdf:type schema:Person
74 N916f1cecbe894612a18324d799cd8812 schema:volumeNumber 29
75 rdf:type schema:PublicationVolume
76 Nc14919561b8e4ae791873938b0f1c85f schema:name doi
77 schema:value 10.1007/s11769-019-1029-z
78 rdf:type schema:PropertyValue
79 Nc81df4affe914c8f9d21e3e89b5cd765 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
80 schema:familyName Cui
81 schema:givenName Can
82 rdf:type schema:Person
83 Nd639e7f00ffc4fca9310b5c2bfd7aba6 schema:name dimensions_id
84 schema:value pub.1112505139
85 rdf:type schema:PropertyValue
86 Nf7f7f0f535e9453ea2095d3f86a1325f rdf:first N5b6588bbf05e422fad595653be770214
87 rdf:rest N8ce0f819a3bd4a9bb40b83ecfb019da9
88 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
89 schema:name Economics
90 rdf:type schema:DefinedTerm
91 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
92 schema:name Applied Economics
93 rdf:type schema:DefinedTerm
94 sg:journal.1028731 schema:issn 1002-0063
95 1993-064X
96 schema:name Chinese Geographical Science
97 rdf:type schema:Periodical
98 sg:pub.10.1007/s11294-014-9511-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011092936
99 https://doi.org/10.1007/s11294-014-9511-y
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0047-2727(94)01449-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032203819
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.apenergy.2011.05.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036297329
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.apenergy.2015.01.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012134464
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.apenergy.2015.05.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025854495
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.buildenv.2009.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052360099
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.buildenv.2012.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036107302
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.buildenv.2015.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010832508
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.buildenv.2015.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000169459
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.buildenv.2016.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007726739
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ecolecon.2004.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015282101
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ecolind.2017.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085405701
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.enbuild.2010.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034328109
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.enbuild.2015.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018304126
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.eneco.2013.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047634906
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.energy.2015.12.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038062021
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.energy.2016.02.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014762346
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.enpol.2013.06.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016024338
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.habitatint.2014.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015816579
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jclepro.2014.01.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026652471
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jclepro.2016.09.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040500214
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jclepro.2017.06.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086034842
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jclepro.2017.09.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091502982
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.trd.2016.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053259875
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1177/0022185616673685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083746103
148 rdf:type schema:CreativeWork
149 https://doi.org/10.15244/pjoes/70894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092026347
150 rdf:type schema:CreativeWork
151 https://doi.org/10.4028/www.scientific.net/amr.524-527.2595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072023615
152 rdf:type schema:CreativeWork
153 https://doi.org/10.5455/elet.2017.4.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090510015
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.440725.0 schema:alternateName Guilin University of Technology
156 schema:name College of Civil Engineering and Architecture, Guilin University of Technology, 541004, Guilin, China
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
159 schema:name School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, China
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...