Combining Environmental Factors and Lab VNIR Spectral Data to Predict SOM by Geospatial Techniques View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Long Guo, Haitao Zhang, Yiyun Chen, Jing Qian

ABSTRACT

Soil organic matter (SOM) is an important parameter related to soil nutrient and miscellaneous ecosystem services. This paper attempts to improve the performance of traditional partial least square regression (PLSR) model by considering the spatial autocorrelation and soil forming factors. Surface soil samples (n = 180) were collected from Honghu City located in the middle of Jianghan Plain, China. The visible and near infrared (VNIR) spectra and six environmental factors (elevation, land use types, roughness, relief amplitude, enhanced vegetation index, and land surface water index) were used as the auxiliary variables to construct the multiple linear regression (MLR), PLSR and geographically weighted regression (GWR) models. Results showed that: 1) the VNIR spectra can increase about 39.62% prediction accuracy than the environmental factors in predicting SOM; 2) the comprehensive variables of VNIR spectra and the environmental factors can improve about 5.78% and 44.90% relative to soil spectral models and soil environmental models, respectively; 3) the spatial model (GWR) can improve about 3.28% accuracy than MLR and PLSR. Our results suggest that the combination of spectral reflectance and the environmental variables can be used as the suitable auxiliary variables in predicting SOM, and GWR is a promising model for predicting soil properties. More... »

PAGES

258-269

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11769-019-1020-8

DOI

http://dx.doi.org/10.1007/s11769-019-1020-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112504511


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Huazhong Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.35155.37", 
          "name": [
            "College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Long", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huazhong Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.35155.37", 
          "name": [
            "College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Haitao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "School of Resource and Environment, Wuhan University, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yiyun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "School of Resource and Environment, Wuhan University, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Jing", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.catena.2014.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002546620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ejss.12237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009418997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-014-1370-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013261421", 
          "https://doi.org/10.1007/s12517-014-1370-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2014.12.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014266129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016248469", 
          "https://doi.org/10.1038/nature10386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2007.01.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017902064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2005.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018118301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2005.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018118301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-8592-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020141301", 
          "https://doi.org/10.1007/978-1-4020-8592-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2015.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023983260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.still.2013.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027734246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2015.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029964770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.2012.01495.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030072556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2113(08)60673-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031855370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeog.2013.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032225771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfoodeng.2004.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032282572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035141505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeochem.2011.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036314863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaridenv.2004.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037529052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.still.2014.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041279097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11430-013-4808-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043546154", 
          "https://doi.org/10.1007/s11430-013-4808-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-35973-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044023158", 
          "https://doi.org/10.1007/978-0-387-35973-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-35973-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044023158", 
          "https://doi.org/10.1007/978-0-387-35973-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11442-013-1010-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046366219", 
          "https://doi.org/10.1007/s11442-013-1010-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11769-013-0631-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049890848", 
          "https://doi.org/10.1007/s11769-013-0631-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2016.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050059181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ejlt.200700001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051576490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/004017004000000563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.23122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064892791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2017.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084076865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/wf16122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084152668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijgi6100308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092270806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs10060888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104429710"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Soil organic matter (SOM) is an important parameter related to soil nutrient and miscellaneous ecosystem services. This paper attempts to improve the performance of traditional partial least square regression (PLSR) model by considering the spatial autocorrelation and soil forming factors. Surface soil samples (n = 180) were collected from Honghu City located in the middle of Jianghan Plain, China. The visible and near infrared (VNIR) spectra and six environmental factors (elevation, land use types, roughness, relief amplitude, enhanced vegetation index, and land surface water index) were used as the auxiliary variables to construct the multiple linear regression (MLR), PLSR and geographically weighted regression (GWR) models. Results showed that: 1) the VNIR spectra can increase about 39.62% prediction accuracy than the environmental factors in predicting SOM; 2) the comprehensive variables of VNIR spectra and the environmental factors can improve about 5.78% and 44.90% relative to soil spectral models and soil environmental models, respectively; 3) the spatial model (GWR) can improve about 3.28% accuracy than MLR and PLSR. Our results suggest that the combination of spectral reflectance and the environmental variables can be used as the suitable auxiliary variables in predicting SOM, and GWR is a promising model for predicting soil properties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11769-019-1020-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028731", 
        "issn": [
          "1002-0063", 
          "1993-064X"
        ], 
        "name": "Chinese Geographical Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Combining Environmental Factors and Lab VNIR Spectral Data to Predict SOM by Geospatial Techniques", 
    "pagination": "258-269", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f6606a2b6d9883df5a2fa0d355d429cf54f7769f9ec573c7f7927b42d493c9d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11769-019-1020-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112504511"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11769-019-1020-8", 
      "https://app.dimensions.ai/details/publication/pub.1112504511"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77549_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11769-019-1020-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1020-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1020-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1020-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11769-019-1020-8'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11769-019-1020-8 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author N932e386c5a9240379de98e3e7ac8c54d
4 schema:citation sg:pub.10.1007/978-0-387-35973-1
5 sg:pub.10.1007/978-1-4020-8592-5_1
6 sg:pub.10.1007/s11430-013-4808-x
7 sg:pub.10.1007/s11442-013-1010-1
8 sg:pub.10.1007/s11769-013-0631-8
9 sg:pub.10.1007/s12517-014-1370-6
10 sg:pub.10.1038/nature10386
11 https://doi.org/10.1002/ejlt.200700001
12 https://doi.org/10.1016/j.apgeochem.2011.04.014
13 https://doi.org/10.1016/j.apgeog.2013.04.002
14 https://doi.org/10.1016/j.catena.2014.09.004
15 https://doi.org/10.1016/j.chemosphere.2014.12.027
16 https://doi.org/10.1016/j.geoderma.2005.04.025
17 https://doi.org/10.1016/j.geoderma.2010.03.001
18 https://doi.org/10.1016/j.geoderma.2015.04.017
19 https://doi.org/10.1016/j.geoderma.2015.07.007
20 https://doi.org/10.1016/j.geoderma.2016.10.010
21 https://doi.org/10.1016/j.geoderma.2017.02.014
22 https://doi.org/10.1016/j.jaridenv.2004.03.002
23 https://doi.org/10.1016/j.jfoodeng.2004.07.003
24 https://doi.org/10.1016/j.scitotenv.2007.01.052
25 https://doi.org/10.1016/j.still.2013.09.002
26 https://doi.org/10.1016/j.still.2014.12.002
27 https://doi.org/10.1016/s0065-2113(08)60673-2
28 https://doi.org/10.1071/wf16122
29 https://doi.org/10.1111/ejss.12237
30 https://doi.org/10.1111/j.1365-2389.2012.01495.x
31 https://doi.org/10.1198/004017004000000563
32 https://doi.org/10.13031/2013.23122
33 https://doi.org/10.3390/ijgi6100308
34 https://doi.org/10.3390/rs10060888
35 schema:datePublished 2019-04
36 schema:datePublishedReg 2019-04-01
37 schema:description Soil organic matter (SOM) is an important parameter related to soil nutrient and miscellaneous ecosystem services. This paper attempts to improve the performance of traditional partial least square regression (PLSR) model by considering the spatial autocorrelation and soil forming factors. Surface soil samples (n = 180) were collected from Honghu City located in the middle of Jianghan Plain, China. The visible and near infrared (VNIR) spectra and six environmental factors (elevation, land use types, roughness, relief amplitude, enhanced vegetation index, and land surface water index) were used as the auxiliary variables to construct the multiple linear regression (MLR), PLSR and geographically weighted regression (GWR) models. Results showed that: 1) the VNIR spectra can increase about 39.62% prediction accuracy than the environmental factors in predicting SOM; 2) the comprehensive variables of VNIR spectra and the environmental factors can improve about 5.78% and 44.90% relative to soil spectral models and soil environmental models, respectively; 3) the spatial model (GWR) can improve about 3.28% accuracy than MLR and PLSR. Our results suggest that the combination of spectral reflectance and the environmental variables can be used as the suitable auxiliary variables in predicting SOM, and GWR is a promising model for predicting soil properties.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N54df999edead4d36a528c98379951599
42 N6373bd90603e4f208e5deb78159453bf
43 sg:journal.1028731
44 schema:name Combining Environmental Factors and Lab VNIR Spectral Data to Predict SOM by Geospatial Techniques
45 schema:pagination 258-269
46 schema:productId Nb3c26101a9244e61b7f7bd69453e48d9
47 Ne2b826fdcfe0439ea84509779c87575a
48 Ne9e76e8b4c554827868abe5d957065dd
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504511
50 https://doi.org/10.1007/s11769-019-1020-8
51 schema:sdDatePublished 2019-04-11T10:48
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N55c58341b6b84fcfbc879d0616340a59
54 schema:url https://link.springer.com/10.1007%2Fs11769-019-1020-8
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N3c43b34d35e3453eb4fd9f2c3bda6cd1 schema:affiliation https://www.grid.ac/institutes/grid.35155.37
59 schema:familyName Guo
60 schema:givenName Long
61 rdf:type schema:Person
62 N41723d79ea8547d6a7e30cfafb74248f rdf:first N81a92931dcb543e089478e63e39e347e
63 rdf:rest N6eca8510b1e44ec4be3734f5c28e033b
64 N54df999edead4d36a528c98379951599 schema:issueNumber 2
65 rdf:type schema:PublicationIssue
66 N55c58341b6b84fcfbc879d0616340a59 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N6373bd90603e4f208e5deb78159453bf schema:volumeNumber 29
69 rdf:type schema:PublicationVolume
70 N6eca8510b1e44ec4be3734f5c28e033b rdf:first Ne171626d12574cdea7e65f3e44113ce8
71 rdf:rest Naf2cc704fda443ae8c53ee181280e9d3
72 N81a92931dcb543e089478e63e39e347e schema:affiliation https://www.grid.ac/institutes/grid.35155.37
73 schema:familyName Zhang
74 schema:givenName Haitao
75 rdf:type schema:Person
76 N932e386c5a9240379de98e3e7ac8c54d rdf:first N3c43b34d35e3453eb4fd9f2c3bda6cd1
77 rdf:rest N41723d79ea8547d6a7e30cfafb74248f
78 N9c13b1f4acef44c3bb80a9c3ebbd463f schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
79 schema:familyName Qian
80 schema:givenName Jing
81 rdf:type schema:Person
82 Naf2cc704fda443ae8c53ee181280e9d3 rdf:first N9c13b1f4acef44c3bb80a9c3ebbd463f
83 rdf:rest rdf:nil
84 Nb3c26101a9244e61b7f7bd69453e48d9 schema:name doi
85 schema:value 10.1007/s11769-019-1020-8
86 rdf:type schema:PropertyValue
87 Ne171626d12574cdea7e65f3e44113ce8 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
88 schema:familyName Chen
89 schema:givenName Yiyun
90 rdf:type schema:Person
91 Ne2b826fdcfe0439ea84509779c87575a schema:name dimensions_id
92 schema:value pub.1112504511
93 rdf:type schema:PropertyValue
94 Ne9e76e8b4c554827868abe5d957065dd schema:name readcube_id
95 schema:value 5f6606a2b6d9883df5a2fa0d355d429cf54f7769f9ec573c7f7927b42d493c9d
96 rdf:type schema:PropertyValue
97 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
98 schema:name Environmental Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
101 schema:name Soil Sciences
102 rdf:type schema:DefinedTerm
103 sg:journal.1028731 schema:issn 1002-0063
104 1993-064X
105 schema:name Chinese Geographical Science
106 rdf:type schema:Periodical
107 sg:pub.10.1007/978-0-387-35973-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044023158
108 https://doi.org/10.1007/978-0-387-35973-1
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-1-4020-8592-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020141301
111 https://doi.org/10.1007/978-1-4020-8592-5_1
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11430-013-4808-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043546154
114 https://doi.org/10.1007/s11430-013-4808-x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11442-013-1010-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046366219
117 https://doi.org/10.1007/s11442-013-1010-1
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11769-013-0631-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049890848
120 https://doi.org/10.1007/s11769-013-0631-8
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s12517-014-1370-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013261421
123 https://doi.org/10.1007/s12517-014-1370-6
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nature10386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016248469
126 https://doi.org/10.1038/nature10386
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/ejlt.200700001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051576490
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.apgeochem.2011.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036314863
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.apgeog.2013.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032225771
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.catena.2014.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002546620
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.chemosphere.2014.12.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014266129
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.geoderma.2005.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018118301
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.geoderma.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035141505
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.geoderma.2015.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029964770
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.geoderma.2015.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023983260
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.geoderma.2016.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050059181
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.geoderma.2017.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084076865
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jaridenv.2004.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037529052
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jfoodeng.2004.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032282572
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.scitotenv.2007.01.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017902064
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.still.2013.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027734246
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.still.2014.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041279097
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0065-2113(08)60673-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031855370
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1071/wf16122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084152668
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/ejss.12237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009418997
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/j.1365-2389.2012.01495.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030072556
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1198/004017004000000563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197587
169 rdf:type schema:CreativeWork
170 https://doi.org/10.13031/2013.23122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064892791
171 rdf:type schema:CreativeWork
172 https://doi.org/10.3390/ijgi6100308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092270806
173 rdf:type schema:CreativeWork
174 https://doi.org/10.3390/rs10060888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104429710
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.35155.37 schema:alternateName Huazhong Agricultural University
177 schema:name College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, China
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
180 schema:name School of Resource and Environment, Wuhan University, 430070, Wuhan, China
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...