Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Qiuyu Liu, Tinglong Zhang, Yizhe Li, Ying Li, Chongfeng Bu, Qingfeng Zhang

ABSTRACT

The estimation of fractional vegetation cover (FVC) is important for identifying and monitoring desertification, especially in arid and semiarid regions. By using regression and pixel dichotomy models, we present the comparison of Sentinel-2A (S2) multispectral instrument (MSI) and Landsat 8 (L8) operational land imager (OLI) data regarding the retrieval of FVC in a semi-arid sandy area (Mu Us Sandland, China, in August 2016). A combination of unmanned aerial vehicle (UAV) high-spatial-resolution images and field plots were used to produce verified data. Based on a normalized difference vegetation index (NDVI) regression model, the results showed that, compared with that of L8, the coefficient of determination (R2) of S2 increased by 26.0%, and the root mean square error (RMSE) and the sum of absolute error (SAE) decreased by 3.0% and 11.4%, respectively. For the ratio vegetation index (RVI) regression model, compared with that of L8, the R2 of S2 increased by 26.0%, and the RMSE and SAE decreased by 8.0% and 20.0%, respectively. When the pixel dichotomy model was used, compared with that of L8, the RMSE of S2 decreased by 21.3%, and the SAE decreased by 26.9%. Overall, S2 performed better than L8 in terms of FVC inversion. Additionally, in this paper, we develop a verified scheme based on UAV data in combination with the object-based classification method. This scheme is feasible and sufficiently robust for building relationships between field data and inversion results from satellite data. Further, the synergy of multi-source sensors (especially UAVs and satellites) is a potential effective way to estimate and evaluate regional ecological environmental parameters (FVC). More... »

PAGES

1-15

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11769-018-1010-2

DOI

http://dx.doi.org/10.1007/s11769-018-1010-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1108057835


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "North West Agriculture and Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.144022.1", 
          "name": [
            "College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Qiuyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North West Agriculture and Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.144022.1", 
          "name": [
            "College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Tinglong", 
        "id": "sg:person.014245623035.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014245623035.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North West Agriculture and Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.144022.1", 
          "name": [
            "College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yizhe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North West Agriculture and Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.144022.1", 
          "name": [
            "College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Soil and Water Conservation", 
          "id": "https://www.grid.ac/institutes/grid.458510.d", 
          "name": [
            "Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, No. 26 Xinong Road, 712100, Yangling, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bu", 
        "givenName": "Chongfeng", 
        "id": "sg:person.01312624376.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312624376.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North West Agriculture and Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.144022.1", 
          "name": [
            "College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Qingfeng", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eja.2014.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002161636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/95jd02138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003047724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160600658149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003143049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2016.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004516258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2013.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004662432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2004.01073.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006852429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2008.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009596673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02347860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010907301", 
          "https://doi.org/10.1007/bf02347860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/bf02347860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010907301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/bf02347860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010907301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2016.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012289455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012790404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2013.879350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015906086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(2003)042<1525:ivadto>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016887789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311600750037543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019439896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(00)00119-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022183954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(88)90106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022508161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(88)90106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022508161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160802036466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026177551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311600210830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026651964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2011.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029345612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s8063880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029743521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8120992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030101552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160903329364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031540089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2015.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032694598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2008.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033178926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2006.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037381233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311698215333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037909986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(03)00014-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038721538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2012.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039655789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s110707063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042701534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(86)90012-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043212638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(86)90012-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043212638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5589/m09-037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047352505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrs.2011.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047426191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00036043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048672488", 
          "https://doi.org/10.1007/bf00036043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00036043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048672488", 
          "https://doi.org/10.1007/bf00036043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2006.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049432458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431168808954929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049487991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs6054217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053056180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.134076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061160676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14430/arctic1495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067308238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14430/arctic1495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067308238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077804432", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1553/giscience2017_01_s93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090468366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aquabot.2017.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092344613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2246695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098959317"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "The estimation of fractional vegetation cover (FVC) is important for identifying and monitoring desertification, especially in arid and semiarid regions. By using regression and pixel dichotomy models, we present the comparison of Sentinel-2A (S2) multispectral instrument (MSI) and Landsat 8 (L8) operational land imager (OLI) data regarding the retrieval of FVC in a semi-arid sandy area (Mu Us Sandland, China, in August 2016). A combination of unmanned aerial vehicle (UAV) high-spatial-resolution images and field plots were used to produce verified data. Based on a normalized difference vegetation index (NDVI) regression model, the results showed that, compared with that of L8, the coefficient of determination (R2) of S2 increased by 26.0%, and the root mean square error (RMSE) and the sum of absolute error (SAE) decreased by 3.0% and 11.4%, respectively. For the ratio vegetation index (RVI) regression model, compared with that of L8, the R2 of S2 increased by 26.0%, and the RMSE and SAE decreased by 8.0% and 20.0%, respectively. When the pixel dichotomy model was used, compared with that of L8, the RMSE of S2 decreased by 21.3%, and the SAE decreased by 26.9%. Overall, S2 performed better than L8 in terms of FVC inversion. Additionally, in this paper, we develop a verified scheme based on UAV data in combination with the object-based classification method. This scheme is feasible and sufficiently robust for building relationships between field data and inversion results from satellite data. Further, the synergy of multi-source sensors (especially UAVs and satellites) is a potential effective way to estimate and evaluate regional ecological environmental parameters (FVC).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11769-018-1010-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028731", 
        "issn": [
          "1002-0063", 
          "1993-064X"
        ], 
        "name": "Chinese Geographical Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c9fc26abed6e8617ce165d38af5b743296851cf223404319f37940440886c9e9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11769-018-1010-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1108057835"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11769-018-1010-2", 
      "https://app.dimensions.ai/details/publication/pub.1108057835"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11769-018-1010-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11769-018-1010-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11769-018-1010-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11769-018-1010-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11769-018-1010-2'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      67 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11769-018-1010-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N83abfad5707e46a6ae2ba00fef922b28
4 schema:citation sg:pub.10.1007/bf00036043
5 sg:pub.10.1007/bf02347860
6 https://app.dimensions.ai/details/publication/pub.1077804432
7 https://doi.org/10.1007/bf02347860
8 https://doi.org/10.1016/0034-4257(86)90012-x
9 https://doi.org/10.1016/0034-4257(88)90106-x
10 https://doi.org/10.1016/j.agrformet.2006.03.025
11 https://doi.org/10.1016/j.agrformet.2011.07.004
12 https://doi.org/10.1016/j.agwat.2015.01.020
13 https://doi.org/10.1016/j.aquabot.2017.10.004
14 https://doi.org/10.1016/j.compag.2008.04.008
15 https://doi.org/10.1016/j.ecolind.2008.11.011
16 https://doi.org/10.1016/j.ecolmodel.2006.04.019
17 https://doi.org/10.1016/j.eja.2014.01.004
18 https://doi.org/10.1016/j.ejrs.2011.06.001
19 https://doi.org/10.1016/j.isprsjprs.2013.04.007
20 https://doi.org/10.1016/j.jag.2012.07.003
21 https://doi.org/10.1016/j.jag.2016.03.005
22 https://doi.org/10.1016/j.jag.2016.07.011
23 https://doi.org/10.1016/j.rse.2016.02.019
24 https://doi.org/10.1016/s0034-4257(00)00119-x
25 https://doi.org/10.1016/s0034-4257(03)00014-2
26 https://doi.org/10.1029/95jd02138
27 https://doi.org/10.1080/014311600210830
28 https://doi.org/10.1080/014311600750037543
29 https://doi.org/10.1080/01431160600658149
30 https://doi.org/10.1080/01431160802036466
31 https://doi.org/10.1080/01431160903329364
32 https://doi.org/10.1080/01431161.2013.879350
33 https://doi.org/10.1080/01431168808954929
34 https://doi.org/10.1080/014311698215333
35 https://doi.org/10.1109/36.134076
36 https://doi.org/10.1111/j.1469-8137.2004.01073.x
37 https://doi.org/10.1117/12.2246695
38 https://doi.org/10.1175/1520-0450(2003)042<1525:ivadto>2.0.co;2
39 https://doi.org/10.14430/arctic1495
40 https://doi.org/10.1553/giscience2017_01_s93
41 https://doi.org/10.3390/rs6054217
42 https://doi.org/10.3390/rs8120992
43 https://doi.org/10.3390/s110707063
44 https://doi.org/10.3390/s8063880
45 https://doi.org/10.5589/m09-037
46 schema:datePublished 2019-02
47 schema:datePublishedReg 2019-02-01
48 schema:description The estimation of fractional vegetation cover (FVC) is important for identifying and monitoring desertification, especially in arid and semiarid regions. By using regression and pixel dichotomy models, we present the comparison of Sentinel-2A (S2) multispectral instrument (MSI) and Landsat 8 (L8) operational land imager (OLI) data regarding the retrieval of FVC in a semi-arid sandy area (Mu Us Sandland, China, in August 2016). A combination of unmanned aerial vehicle (UAV) high-spatial-resolution images and field plots were used to produce verified data. Based on a normalized difference vegetation index (NDVI) regression model, the results showed that, compared with that of L8, the coefficient of determination (R2) of S2 increased by 26.0%, and the root mean square error (RMSE) and the sum of absolute error (SAE) decreased by 3.0% and 11.4%, respectively. For the ratio vegetation index (RVI) regression model, compared with that of L8, the R2 of S2 increased by 26.0%, and the RMSE and SAE decreased by 8.0% and 20.0%, respectively. When the pixel dichotomy model was used, compared with that of L8, the RMSE of S2 decreased by 21.3%, and the SAE decreased by 26.9%. Overall, S2 performed better than L8 in terms of FVC inversion. Additionally, in this paper, we develop a verified scheme based on UAV data in combination with the object-based classification method. This scheme is feasible and sufficiently robust for building relationships between field data and inversion results from satellite data. Further, the synergy of multi-source sensors (especially UAVs and satellites) is a potential effective way to estimate and evaluate regional ecological environmental parameters (FVC).
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf sg:journal.1028731
53 schema:name Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area
54 schema:pagination 1-15
55 schema:productId N29e1670c869d47a1be959124a27cc30d
56 N3b1833eab9154e91921b108c9dea17a2
57 Nb0f0a2649eea4c048796dd28266dbc4e
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108057835
59 https://doi.org/10.1007/s11769-018-1010-2
60 schema:sdDatePublished 2019-04-10T14:20
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N0d02e86df5f14401885a4ef4a51b08ce
63 schema:url https://link.springer.com/10.1007%2Fs11769-018-1010-2
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N03abcb24092e484e85fb62d99ca1a287 rdf:first N8a7691a0106140f69c6e21e5b7d20c49
68 rdf:rest N0eb2dfb183c94b05b176217aff23f0d8
69 N06c48de3d4434da1be8111eee3287148 schema:affiliation https://www.grid.ac/institutes/grid.144022.1
70 schema:familyName Liu
71 schema:givenName Qiuyu
72 rdf:type schema:Person
73 N0d02e86df5f14401885a4ef4a51b08ce schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N0eb2dfb183c94b05b176217aff23f0d8 rdf:first sg:person.01312624376.61
76 rdf:rest N228aaeaeec514ae5a549e3dd3030e287
77 N1aa15378a7f243f2b8ca96499f713c84 schema:affiliation https://www.grid.ac/institutes/grid.144022.1
78 schema:familyName Zhang
79 schema:givenName Qingfeng
80 rdf:type schema:Person
81 N228aaeaeec514ae5a549e3dd3030e287 rdf:first N1aa15378a7f243f2b8ca96499f713c84
82 rdf:rest rdf:nil
83 N29e1670c869d47a1be959124a27cc30d schema:name dimensions_id
84 schema:value pub.1108057835
85 rdf:type schema:PropertyValue
86 N3b1833eab9154e91921b108c9dea17a2 schema:name doi
87 schema:value 10.1007/s11769-018-1010-2
88 rdf:type schema:PropertyValue
89 N83abfad5707e46a6ae2ba00fef922b28 rdf:first N06c48de3d4434da1be8111eee3287148
90 rdf:rest Nfc23fdf83b5c441d840958de6a77e0ef
91 N8a7691a0106140f69c6e21e5b7d20c49 schema:affiliation https://www.grid.ac/institutes/grid.144022.1
92 schema:familyName Li
93 schema:givenName Ying
94 rdf:type schema:Person
95 Nb0f0a2649eea4c048796dd28266dbc4e schema:name readcube_id
96 schema:value c9fc26abed6e8617ce165d38af5b743296851cf223404319f37940440886c9e9
97 rdf:type schema:PropertyValue
98 Nb651ae3d34444999877588b7eac5f0fc schema:affiliation https://www.grid.ac/institutes/grid.144022.1
99 schema:familyName Li
100 schema:givenName Yizhe
101 rdf:type schema:Person
102 Nd00771182c8046009f2c82714ddf73b4 rdf:first Nb651ae3d34444999877588b7eac5f0fc
103 rdf:rest N03abcb24092e484e85fb62d99ca1a287
104 Nfc23fdf83b5c441d840958de6a77e0ef rdf:first sg:person.014245623035.40
105 rdf:rest Nd00771182c8046009f2c82714ddf73b4
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:journal.1028731 schema:issn 1002-0063
113 1993-064X
114 schema:name Chinese Geographical Science
115 rdf:type schema:Periodical
116 sg:person.01312624376.61 schema:affiliation https://www.grid.ac/institutes/grid.458510.d
117 schema:familyName Bu
118 schema:givenName Chongfeng
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312624376.61
120 rdf:type schema:Person
121 sg:person.014245623035.40 schema:affiliation https://www.grid.ac/institutes/grid.144022.1
122 schema:familyName Zhang
123 schema:givenName Tinglong
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014245623035.40
125 rdf:type schema:Person
126 sg:pub.10.1007/bf00036043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048672488
127 https://doi.org/10.1007/bf00036043
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf02347860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010907301
130 https://doi.org/10.1007/bf02347860
131 rdf:type schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1077804432 schema:CreativeWork
133 https://doi.org/10.1007/bf02347860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010907301
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0034-4257(86)90012-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043212638
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0034-4257(88)90106-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022508161
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.agrformet.2006.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037381233
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.agrformet.2011.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345612
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.agwat.2015.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032694598
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.aquabot.2017.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092344613
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.compag.2008.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033178926
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ecolind.2008.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009596673
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ecolmodel.2006.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049432458
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.eja.2014.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002161636
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ejrs.2011.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047426191
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.isprsjprs.2013.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004662432
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jag.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039655789
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jag.2016.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004516258
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jag.2016.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012289455
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.rse.2016.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012790404
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0034-4257(00)00119-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022183954
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0034-4257(03)00014-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038721538
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1029/95jd02138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003047724
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1080/014311600210830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026651964
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1080/014311600750037543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019439896
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1080/01431160600658149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003143049
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1080/01431160802036466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026177551
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1080/01431160903329364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031540089
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1080/01431161.2013.879350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015906086
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1080/01431168808954929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049487991
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1080/014311698215333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037909986
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/36.134076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160676
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/j.1469-8137.2004.01073.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006852429
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1117/12.2246695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098959317
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1175/1520-0450(2003)042<1525:ivadto>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016887789
196 rdf:type schema:CreativeWork
197 https://doi.org/10.14430/arctic1495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067308238
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1553/giscience2017_01_s93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090468366
200 rdf:type schema:CreativeWork
201 https://doi.org/10.3390/rs6054217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053056180
202 rdf:type schema:CreativeWork
203 https://doi.org/10.3390/rs8120992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030101552
204 rdf:type schema:CreativeWork
205 https://doi.org/10.3390/s110707063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042701534
206 rdf:type schema:CreativeWork
207 https://doi.org/10.3390/s8063880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029743521
208 rdf:type schema:CreativeWork
209 https://doi.org/10.5589/m09-037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047352505
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.144022.1 schema:alternateName North West Agriculture and Forestry University
212 schema:name College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling Shaanxi, China
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.458510.d schema:alternateName Institute of Soil and Water Conservation
215 schema:name Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, No. 26 Xinong Road, 712100, Yangling, Shaanxi, China
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...