A simple method to extract tropical monsoon forests using NDVI based on MODIS data: A case study in South Asia ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02

AUTHORS

Sen Lin, Ronggao Liu

ABSTRACT

Distribution of monsoon forests is important for the research of carbon and water cycles in the tropical regions. In this paper, a simple approach is proposed to map monsoon forests using the Normalized Difference Vegetation Index (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Owing to the high contrast of greenness between wet season and dry season, the monsoon forest can be easily discriminated from other forests by combining the maximum and minimum annual NDVI. The MODIS-based monsoon forest maps (MODMF) from 2000 to 2009 are derived and evaluated using the ground-truth dataset. The MODMF achieves an average producer accuracy of 80.0% and the Kappa statistic of 0.719. The variability of MODMF among different years is compared with that calculated from MODIS land cover products (MCD12Q1). The results show that the coefficient of variation of total monsoon forest area in MODMF is 7.3%, which is far lower than that in MCD12Q1 with 24.3%. Moreover, the pixels in MODMF which can be identified for 7 to 9 times between 2001 and 2009 account for 53.1%, while only 7.9% of MCD12Q1 pixels have this frequency. Additionally, the monsoon forest areas estimated in MODMF, Global Land Cover 2000 (GLC2000), MCD12Q1 and University of Maryland (UMD) products are compared with the statistical dataset at national level, which reveals that MODMF has the highest R2 of 0.95 and the lowest RMSE of 14 014 km2. This algorithm is simple but reliable for mapping the monsoon forests without complex classification techniques. More... »

PAGES

22-34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11769-015-0789-3

DOI

http://dx.doi.org/10.1007/s11769-015-0789-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034392364


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100049, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Sen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Geographic Sciences and Natural Resources Research", 
          "id": "https://www.grid.ac/institutes/grid.424975.9", 
          "name": [
            "State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ronggao", 
        "id": "sg:person.012415014455.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012415014455.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.rse.2013.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003524994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2012.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004333851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14358/pers.70.7.829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004418873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2005.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007118169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(01)00438-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007533565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2009.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008764231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(02)00089-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008766192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(02)00078-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008856728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001jd000623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010008632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2010.531779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010877864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2699.2005.01424.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011931853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2699.2005.01424.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011931853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-7429.2005.00067.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015250342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-7429.2005.00067.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015250342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1523-1739.2001.015004856.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015316710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs61111518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015323324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2008.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015410116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35009084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015784859", 
          "https://doi.org/10.1038/35009084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35009084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015784859", 
          "https://doi.org/10.1038/35009084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00044670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019993152", 
          "https://doi.org/10.1007/bf00044670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00044670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019993152", 
          "https://doi.org/10.1007/bf00044670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2014.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021792543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(95)00152-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022091701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/96gb02692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022741617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022790636", 
          "https://doi.org/10.1038/srep07483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2004.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024064219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2006.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025142899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000wr000122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027913201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160412331291297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029590258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3207(99)00188-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029622545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/01-6005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031779193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2012.748992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033431498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431168708954764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033491240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1466-8238.2009.00518.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033714652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2007.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034166686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(98)01532-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041449342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.es.17.110186.000435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045857809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-12030-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046379132", 
          "https://doi.org/10.1007/978-1-349-12030-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-12030-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046379132", 
          "https://doi.org/10.1007/978-1-349-12030-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311600210209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052118426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311600210191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052137668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0143116031000149989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058294399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2008.919820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.227.4685.369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062529705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1937384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069661372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471445428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471445428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661221"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02", 
    "datePublishedReg": "2016-02-01", 
    "description": "Distribution of monsoon forests is important for the research of carbon and water cycles in the tropical regions. In this paper, a simple approach is proposed to map monsoon forests using the Normalized Difference Vegetation Index (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Owing to the high contrast of greenness between wet season and dry season, the monsoon forest can be easily discriminated from other forests by combining the maximum and minimum annual NDVI. The MODIS-based monsoon forest maps (MODMF) from 2000 to 2009 are derived and evaluated using the ground-truth dataset. The MODMF achieves an average producer accuracy of 80.0% and the Kappa statistic of 0.719. The variability of MODMF among different years is compared with that calculated from MODIS land cover products (MCD12Q1). The results show that the coefficient of variation of total monsoon forest area in MODMF is 7.3%, which is far lower than that in MCD12Q1 with 24.3%. Moreover, the pixels in MODMF which can be identified for 7 to 9 times between 2001 and 2009 account for 53.1%, while only 7.9% of MCD12Q1 pixels have this frequency. Additionally, the monsoon forest areas estimated in MODMF, Global Land Cover 2000 (GLC2000), MCD12Q1 and University of Maryland (UMD) products are compared with the statistical dataset at national level, which reveals that MODMF has the highest R2 of 0.95 and the lowest RMSE of 14 014 km2. This algorithm is simple but reliable for mapping the monsoon forests without complex classification techniques.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11769-015-0789-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1028731", 
        "issn": [
          "1002-0063", 
          "1993-064X"
        ], 
        "name": "Chinese Geographical Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "A simple method to extract tropical monsoon forests using NDVI based on MODIS data: A case study in South Asia and Peninsula Southeast Asia", 
    "pagination": "22-34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a3d4fd2bb0d4864c7340967f438a64df070d4e824d63a94a548e8188d615ad8e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11769-015-0789-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034392364"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11769-015-0789-3", 
      "https://app.dimensions.ai/details/publication/pub.1034392364"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11769-015-0789-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11769-015-0789-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11769-015-0789-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11769-015-0789-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11769-015-0789-3'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11769-015-0789-3 schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author Necc4e097aa174dc6a4300adfc7b0b294
4 schema:citation sg:pub.10.1007/978-1-349-12030-7
5 sg:pub.10.1007/bf00044670
6 sg:pub.10.1038/35009084
7 sg:pub.10.1038/srep07483
8 https://doi.org/10.1002/0471445428
9 https://doi.org/10.1016/0034-4257(95)00152-2
10 https://doi.org/10.1016/j.agrformet.2008.01.011
11 https://doi.org/10.1016/j.foreco.2006.04.013
12 https://doi.org/10.1016/j.rse.2004.12.009
13 https://doi.org/10.1016/j.rse.2005.03.011
14 https://doi.org/10.1016/j.rse.2007.11.013
15 https://doi.org/10.1016/j.rse.2009.08.016
16 https://doi.org/10.1016/j.rse.2012.11.009
17 https://doi.org/10.1016/j.rse.2013.01.019
18 https://doi.org/10.1016/j.rse.2014.01.011
19 https://doi.org/10.1016/s0006-3207(99)00188-3
20 https://doi.org/10.1016/s0022-1694(01)00438-3
21 https://doi.org/10.1016/s0034-4257(02)00078-0
22 https://doi.org/10.1016/s0034-4257(02)00089-5
23 https://doi.org/10.1016/s0169-5347(98)01532-8
24 https://doi.org/10.1029/2000wr000122
25 https://doi.org/10.1029/2001jd000623
26 https://doi.org/10.1029/96gb02692
27 https://doi.org/10.1046/j.1523-1739.2001.015004856.x
28 https://doi.org/10.1080/014311600210191
29 https://doi.org/10.1080/014311600210209
30 https://doi.org/10.1080/0143116031000149989
31 https://doi.org/10.1080/01431160412331291297
32 https://doi.org/10.1080/01431161.2010.531779
33 https://doi.org/10.1080/01431161.2012.748992
34 https://doi.org/10.1080/01431168708954764
35 https://doi.org/10.1109/tgrs.2008.919820
36 https://doi.org/10.1111/j.1365-2699.2005.01424.x
37 https://doi.org/10.1111/j.1466-8238.2009.00518.x
38 https://doi.org/10.1111/j.1744-7429.2005.00067.x
39 https://doi.org/10.1126/science.227.4685.369
40 https://doi.org/10.1146/annurev.es.17.110186.000435
41 https://doi.org/10.14358/pers.70.7.829
42 https://doi.org/10.1890/01-6005
43 https://doi.org/10.2307/1937384
44 https://doi.org/10.2307/2529310
45 https://doi.org/10.3390/rs61111518
46 schema:datePublished 2016-02
47 schema:datePublishedReg 2016-02-01
48 schema:description Distribution of monsoon forests is important for the research of carbon and water cycles in the tropical regions. In this paper, a simple approach is proposed to map monsoon forests using the Normalized Difference Vegetation Index (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Owing to the high contrast of greenness between wet season and dry season, the monsoon forest can be easily discriminated from other forests by combining the maximum and minimum annual NDVI. The MODIS-based monsoon forest maps (MODMF) from 2000 to 2009 are derived and evaluated using the ground-truth dataset. The MODMF achieves an average producer accuracy of 80.0% and the Kappa statistic of 0.719. The variability of MODMF among different years is compared with that calculated from MODIS land cover products (MCD12Q1). The results show that the coefficient of variation of total monsoon forest area in MODMF is 7.3%, which is far lower than that in MCD12Q1 with 24.3%. Moreover, the pixels in MODMF which can be identified for 7 to 9 times between 2001 and 2009 account for 53.1%, while only 7.9% of MCD12Q1 pixels have this frequency. Additionally, the monsoon forest areas estimated in MODMF, Global Land Cover 2000 (GLC2000), MCD12Q1 and University of Maryland (UMD) products are compared with the statistical dataset at national level, which reveals that MODMF has the highest R2 of 0.95 and the lowest RMSE of 14 014 km2. This algorithm is simple but reliable for mapping the monsoon forests without complex classification techniques.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N0bb1c0587e1745099f84b0cfeed1cce9
53 Nf028f4724a194256a51a72b12b0ce4d9
54 sg:journal.1028731
55 schema:name A simple method to extract tropical monsoon forests using NDVI based on MODIS data: A case study in South Asia and Peninsula Southeast Asia
56 schema:pagination 22-34
57 schema:productId N1631b811ef3e4d23a2ac1303145e2150
58 Naf44f3af94644d46b19b25e30c1db600
59 Nd3e2b56e66304ed78e773b7b058b6ce8
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034392364
61 https://doi.org/10.1007/s11769-015-0789-3
62 schema:sdDatePublished 2019-04-10T16:45
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nc5e98e097f034e02b9d53d40776e3533
65 schema:url http://link.springer.com/10.1007%2Fs11769-015-0789-3
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0bb1c0587e1745099f84b0cfeed1cce9 schema:volumeNumber 26
70 rdf:type schema:PublicationVolume
71 N1631b811ef3e4d23a2ac1303145e2150 schema:name dimensions_id
72 schema:value pub.1034392364
73 rdf:type schema:PropertyValue
74 N3768c93e00cf4aed99ad7ccd3573075e rdf:first sg:person.012415014455.72
75 rdf:rest rdf:nil
76 N5744bf3c5f7449cb86cc12a958ecaf90 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
77 schema:familyName Lin
78 schema:givenName Sen
79 rdf:type schema:Person
80 Naf44f3af94644d46b19b25e30c1db600 schema:name readcube_id
81 schema:value a3d4fd2bb0d4864c7340967f438a64df070d4e824d63a94a548e8188d615ad8e
82 rdf:type schema:PropertyValue
83 Nc5e98e097f034e02b9d53d40776e3533 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nd3e2b56e66304ed78e773b7b058b6ce8 schema:name doi
86 schema:value 10.1007/s11769-015-0789-3
87 rdf:type schema:PropertyValue
88 Necc4e097aa174dc6a4300adfc7b0b294 rdf:first N5744bf3c5f7449cb86cc12a958ecaf90
89 rdf:rest N3768c93e00cf4aed99ad7ccd3573075e
90 Nf028f4724a194256a51a72b12b0ce4d9 schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
93 schema:name Agricultural and Veterinary Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
96 schema:name Forestry Sciences
97 rdf:type schema:DefinedTerm
98 sg:journal.1028731 schema:issn 1002-0063
99 1993-064X
100 schema:name Chinese Geographical Science
101 rdf:type schema:Periodical
102 sg:person.012415014455.72 schema:affiliation https://www.grid.ac/institutes/grid.424975.9
103 schema:familyName Liu
104 schema:givenName Ronggao
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012415014455.72
106 rdf:type schema:Person
107 sg:pub.10.1007/978-1-349-12030-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046379132
108 https://doi.org/10.1007/978-1-349-12030-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf00044670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019993152
111 https://doi.org/10.1007/bf00044670
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/35009084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015784859
114 https://doi.org/10.1038/35009084
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/srep07483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022790636
117 https://doi.org/10.1038/srep07483
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/0471445428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661221
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0034-4257(95)00152-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022091701
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.agrformet.2008.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015410116
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.foreco.2006.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025142899
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.rse.2004.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024064219
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.rse.2005.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007118169
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.rse.2007.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034166686
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.rse.2009.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008764231
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.rse.2012.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004333851
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.rse.2013.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003524994
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.rse.2014.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021792543
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0006-3207(99)00188-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029622545
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0022-1694(01)00438-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007533565
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0034-4257(02)00078-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008856728
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0034-4257(02)00089-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008766192
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0169-5347(98)01532-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041449342
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1029/2000wr000122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027913201
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1029/2001jd000623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010008632
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1029/96gb02692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022741617
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1046/j.1523-1739.2001.015004856.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015316710
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/014311600210191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052137668
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/014311600210209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052118426
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1080/0143116031000149989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058294399
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/01431160412331291297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029590258
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/01431161.2010.531779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010877864
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1080/01431161.2012.748992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033431498
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1080/01431168708954764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033491240
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tgrs.2008.919820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610872
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1111/j.1365-2699.2005.01424.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011931853
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1111/j.1466-8238.2009.00518.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033714652
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1111/j.1744-7429.2005.00067.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015250342
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.227.4685.369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062529705
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1146/annurev.es.17.110186.000435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045857809
184 rdf:type schema:CreativeWork
185 https://doi.org/10.14358/pers.70.7.829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004418873
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1890/01-6005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031779193
188 rdf:type schema:CreativeWork
189 https://doi.org/10.2307/1937384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069661372
190 rdf:type schema:CreativeWork
191 https://doi.org/10.2307/2529310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974986
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3390/rs61111518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015323324
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
196 schema:name State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100049, Beijing, China
197 University of Chinese Academy of Sciences, 100049, Beijing, China
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.424975.9 schema:alternateName Institute of Geographic Sciences and Natural Resources Research
200 schema:name State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100049, Beijing, China
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...