Automatic visual inspection of thermoelectric metal pipes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-11

AUTHORS

Daniel Vriesman, Alceu S. Britto, Alessandro Zimmer, Alessandro L. Koerich, Rodrigo Paludo

ABSTRACT

This paper presents the main aspects of the design of an image acquisition and processing approach that can be inserted into thermoelectric metal pipe systems and travel inside the pipes to capture images from the inner surface of such pipes for further analysis. After the image capture, a preprocessing is applied based on iris recognition, which transforms the image from a Cartesian coordinate system to a polar coordinate system, which allows a better texture analysis of the internal surface of the pipe. The extracted information is used to train a classifier capable of automatically identifying segments that present some type of corrosion or defects. The experimental results in a dataset of 6150 images using two textural features have shown that the proposed classification approach can achieve accuracy between 96 and 98% in the test set. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11760-019-01435-2

DOI

http://dx.doi.org/10.1007/s11760-019-01435-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112069044


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Federal University of Paran\u00e1, Curitiba, PR, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vriesman", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.412522.2", 
          "name": [
            "Pontifical Catholic University of Paran\u00e1, Curitiba, PR, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Britto", 
        "givenName": "Alceu S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Hochschule Ingolstadt", 
          "id": "https://www.grid.ac/institutes/grid.454235.1", 
          "name": [
            "Federal University of Paran\u00e1, Curitiba, PR, Brazil", 
            "Technische Hochschule Ingolstadt, Ingolstadt, BV, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zimmer", 
        "givenName": "Alessandro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole de Technologie Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "\u00c9cole de Technologie Sup\u00e9rieure, Universit\u00e9 du Qu\u00e9bec, Montr\u00e9al, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koerich", 
        "givenName": "Alessandro L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Lactec Institute, Curitiba, PR, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paludo", 
        "givenName": "Rodrigo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.proeng.2016.07.416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001248544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-69905-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009665193", 
          "https://doi.org/10.1007/978-3-540-69905-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-69905-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009665193", 
          "https://doi.org/10.1007/978-3-540-69905-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010042593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2015.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011046713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2012.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017171005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-41827-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017719759", 
          "https://doi.org/10.1007/978-3-642-41827-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(02)00030-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020841916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1936.tb02137.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.autcon.2005.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041290736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.autcon.2005.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041290736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-011-0275-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041688758", 
          "https://doi.org/10.1007/s11760-011-0275-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2015.03.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042237435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.07.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043267745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0262-8856(02)00152-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044160456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0262-8856(02)00152-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044160456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfailanal.2011.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048032767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2016.2591520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061541669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-017-0934-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085720780", 
          "https://doi.org/10.1007/s10586-017-0934-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0179161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085934122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bspc.2017.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090576794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-017-1181-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091907827", 
          "https://doi.org/10.1007/s11760-017-1181-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1092534050", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-81-322-3751-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092534050", 
          "https://doi.org/10.1007/978-81-322-3751-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cybvis.1996.629454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093256832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iecon.2012.6388523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094941349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/carpi.2014.7030052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095032063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsipa.2015.7412188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095665120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iecon.2011.6119655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095686302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iecon.2006.347618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095694100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iecon.2006.347618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095694100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2012.6252626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095797196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.433840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102197368"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-11", 
    "datePublishedReg": "2019-02-11", 
    "description": "This paper presents the main aspects of the design of an image acquisition and processing approach that can be inserted into thermoelectric metal pipe systems and travel inside the pipes to capture images from the inner surface of such pipes for further analysis. After the image capture, a preprocessing is applied based on iris recognition, which transforms the image from a Cartesian coordinate system to a polar coordinate system, which allows a better texture analysis of the internal surface of the pipe. The extracted information is used to train a classifier capable of automatically identifying segments that present some type of corrosion or defects. The experimental results in a dataset of 6150 images using two textural features have shown that the proposed classification approach can achieve accuracy between 96 and 98% in the test set.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11760-019-01435-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050964", 
        "issn": [
          "1863-1703", 
          "1863-1711"
        ], 
        "name": "Signal, Image and Video Processing", 
        "type": "Periodical"
      }
    ], 
    "name": "Automatic visual inspection of thermoelectric metal pipes", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9a46c8432316c83b7c541f67be869b95985c7a9bcc6dbb3d0e2198f6c2a906f2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11760-019-01435-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112069044"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11760-019-01435-2", 
      "https://app.dimensions.ai/details/publication/pub.1112069044"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000334_0000000334/records_127800_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11760-019-01435-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-019-01435-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-019-01435-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-019-01435-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-019-01435-2'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      55 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11760-019-01435-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9791d5f9936c48bd8cd9f818cd8fb00d
4 schema:citation sg:pub.10.1007/978-3-540-69905-7_27
5 sg:pub.10.1007/978-3-642-41827-3_9
6 sg:pub.10.1007/978-81-322-3751-8
7 sg:pub.10.1007/bf00994018
8 sg:pub.10.1007/s10586-017-0934-0
9 sg:pub.10.1007/s11760-011-0275-z
10 sg:pub.10.1007/s11760-017-1181-9
11 https://app.dimensions.ai/details/publication/pub.1092534050
12 https://doi.org/10.1016/j.asoc.2015.03.039
13 https://doi.org/10.1016/j.autcon.2005.02.005
14 https://doi.org/10.1016/j.bspc.2017.06.010
15 https://doi.org/10.1016/j.engfailanal.2011.06.007
16 https://doi.org/10.1016/j.eswa.2012.07.074
17 https://doi.org/10.1016/j.imavis.2011.02.002
18 https://doi.org/10.1016/j.patcog.2015.12.003
19 https://doi.org/10.1016/j.proeng.2016.07.416
20 https://doi.org/10.1016/j.sigpro.2012.04.023
21 https://doi.org/10.1016/s0031-3203(02)00030-4
22 https://doi.org/10.1016/s0262-8856(02)00152-x
23 https://doi.org/10.1109/carpi.2014.7030052
24 https://doi.org/10.1109/cybvis.1996.629454
25 https://doi.org/10.1109/icsipa.2015.7412188
26 https://doi.org/10.1109/iecon.2006.347618
27 https://doi.org/10.1109/iecon.2011.6119655
28 https://doi.org/10.1109/iecon.2012.6388523
29 https://doi.org/10.1109/ijcnn.2012.6252626
30 https://doi.org/10.1109/tcbb.2016.2591520
31 https://doi.org/10.1109/tsmc.1973.4309314
32 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
33 https://doi.org/10.1371/journal.pone.0179161
34 https://doi.org/10.2139/ssrn.433840
35 schema:datePublished 2019-02-11
36 schema:datePublishedReg 2019-02-11
37 schema:description This paper presents the main aspects of the design of an image acquisition and processing approach that can be inserted into thermoelectric metal pipe systems and travel inside the pipes to capture images from the inner surface of such pipes for further analysis. After the image capture, a preprocessing is applied based on iris recognition, which transforms the image from a Cartesian coordinate system to a polar coordinate system, which allows a better texture analysis of the internal surface of the pipe. The extracted information is used to train a classifier capable of automatically identifying segments that present some type of corrosion or defects. The experimental results in a dataset of 6150 images using two textural features have shown that the proposed classification approach can achieve accuracy between 96 and 98% in the test set.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf sg:journal.1050964
42 schema:name Automatic visual inspection of thermoelectric metal pipes
43 schema:pagination 1-9
44 schema:productId N2487861a85014583a491cdd9f477f4c3
45 N45d3a6a840584c9aa4563cf1086bf69f
46 N7396dfc367c84bff8c4c4896d5e19ac4
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112069044
48 https://doi.org/10.1007/s11760-019-01435-2
49 schema:sdDatePublished 2019-04-11T09:04
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Naf44b72f96304a16a536148d1f89a62c
52 schema:url https://link.springer.com/10.1007%2Fs11760-019-01435-2
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0be2170c907449b3b98c9c4d8c995b57 schema:affiliation https://www.grid.ac/institutes/grid.412522.2
57 schema:familyName Britto
58 schema:givenName Alceu S.
59 rdf:type schema:Person
60 N0cc65a136c684f49941edb4c46a85680 rdf:first Nefcb3785fa044264b0a7e42793c71246
61 rdf:rest Nc49ab945fad8478a9998b74a34f5e9db
62 N2487861a85014583a491cdd9f477f4c3 schema:name doi
63 schema:value 10.1007/s11760-019-01435-2
64 rdf:type schema:PropertyValue
65 N3173c4c523b649cc97f19007c1c6f1e4 rdf:first N0be2170c907449b3b98c9c4d8c995b57
66 rdf:rest N7ff9a6cb1559487593c9960bcc2fb317
67 N45d3a6a840584c9aa4563cf1086bf69f schema:name readcube_id
68 schema:value 9a46c8432316c83b7c541f67be869b95985c7a9bcc6dbb3d0e2198f6c2a906f2
69 rdf:type schema:PropertyValue
70 N4833d0d1bb194d72ac8e824ba16b72ae schema:affiliation https://www.grid.ac/institutes/grid.20736.30
71 schema:familyName Vriesman
72 schema:givenName Daniel
73 rdf:type schema:Person
74 N59454e128e804a929649aee51aefb071 schema:affiliation N73be8cd8bde34d3c80219eb9f30ef783
75 schema:familyName Paludo
76 schema:givenName Rodrigo
77 rdf:type schema:Person
78 N7396dfc367c84bff8c4c4896d5e19ac4 schema:name dimensions_id
79 schema:value pub.1112069044
80 rdf:type schema:PropertyValue
81 N73be8cd8bde34d3c80219eb9f30ef783 schema:name Lactec Institute, Curitiba, PR, Brazil
82 rdf:type schema:Organization
83 N7ff9a6cb1559487593c9960bcc2fb317 rdf:first N80bcb173683048239427f07fed55b04e
84 rdf:rest N0cc65a136c684f49941edb4c46a85680
85 N80bcb173683048239427f07fed55b04e schema:affiliation https://www.grid.ac/institutes/grid.454235.1
86 schema:familyName Zimmer
87 schema:givenName Alessandro
88 rdf:type schema:Person
89 N9791d5f9936c48bd8cd9f818cd8fb00d rdf:first N4833d0d1bb194d72ac8e824ba16b72ae
90 rdf:rest N3173c4c523b649cc97f19007c1c6f1e4
91 Naf44b72f96304a16a536148d1f89a62c schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nc49ab945fad8478a9998b74a34f5e9db rdf:first N59454e128e804a929649aee51aefb071
94 rdf:rest rdf:nil
95 Nefcb3785fa044264b0a7e42793c71246 schema:affiliation https://www.grid.ac/institutes/grid.459234.d
96 schema:familyName Koerich
97 schema:givenName Alessandro L.
98 rdf:type schema:Person
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
103 schema:name Artificial Intelligence and Image Processing
104 rdf:type schema:DefinedTerm
105 sg:journal.1050964 schema:issn 1863-1703
106 1863-1711
107 schema:name Signal, Image and Video Processing
108 rdf:type schema:Periodical
109 sg:pub.10.1007/978-3-540-69905-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009665193
110 https://doi.org/10.1007/978-3-540-69905-7_27
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-642-41827-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017719759
113 https://doi.org/10.1007/978-3-642-41827-3_9
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-81-322-3751-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092534050
116 https://doi.org/10.1007/978-81-322-3751-8
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
119 https://doi.org/10.1007/bf00994018
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10586-017-0934-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085720780
122 https://doi.org/10.1007/s10586-017-0934-0
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11760-011-0275-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041688758
125 https://doi.org/10.1007/s11760-011-0275-z
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11760-017-1181-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091907827
128 https://doi.org/10.1007/s11760-017-1181-9
129 rdf:type schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1092534050 schema:CreativeWork
131 https://doi.org/10.1016/j.asoc.2015.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042237435
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.autcon.2005.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041290736
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.bspc.2017.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090576794
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.engfailanal.2011.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048032767
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.eswa.2012.07.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043267745
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.imavis.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010042593
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.patcog.2015.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011046713
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.proeng.2016.07.416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001248544
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.sigpro.2012.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017171005
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0031-3203(02)00030-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020841916
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0262-8856(02)00152-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044160456
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/carpi.2014.7030052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095032063
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/cybvis.1996.629454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093256832
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/icsipa.2015.7412188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095665120
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/iecon.2006.347618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095694100
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/iecon.2011.6119655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095686302
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/iecon.2012.6388523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094941349
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/ijcnn.2012.6252626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095797196
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tcbb.2016.2591520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541669
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660865
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1371/journal.pone.0179161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085934122
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2139/ssrn.433840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102197368
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.20736.30 schema:alternateName Federal University of Paraná
178 schema:name Federal University of Paraná, Curitiba, PR, Brazil
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.412522.2 schema:alternateName Pontifícia Universidade Católica do Paraná
181 schema:name Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.454235.1 schema:alternateName Technische Hochschule Ingolstadt
184 schema:name Federal University of Paraná, Curitiba, PR, Brazil
185 Technische Hochschule Ingolstadt, Ingolstadt, BV, Germany
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.459234.d schema:alternateName École de Technologie Supérieure
188 schema:name École de Technologie Supérieure, Université du Québec, Montréal, QC, Canada
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...