Automatic visual inspection of thermoelectric metal pipes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-11

AUTHORS

Daniel Vriesman, Alceu S. Britto, Alessandro Zimmer, Alessandro L. Koerich, Rodrigo Paludo

ABSTRACT

This paper presents the main aspects of the design of an image acquisition and processing approach that can be inserted into thermoelectric metal pipe systems and travel inside the pipes to capture images from the inner surface of such pipes for further analysis. After the image capture, a preprocessing is applied based on iris recognition, which transforms the image from a Cartesian coordinate system to a polar coordinate system, which allows a better texture analysis of the internal surface of the pipe. The extracted information is used to train a classifier capable of automatically identifying segments that present some type of corrosion or defects. The experimental results in a dataset of 6150 images using two textural features have shown that the proposed classification approach can achieve accuracy between 96 and 98% in the test set. More... »

PAGES

1-9

References to SciGraph publications

  • 2018. Pipe Inspection Robots for Structural Health and Condition Monitoring in NONE
  • 2018-03. Efficient iris recognition using Haralick features based extraction and fuzzy particle swarm optimization in CLUSTER COMPUTING
  • 2008. Blur Insensitive Texture Classification Using Local Phase Quantization in IMAGE AND SIGNAL PROCESSING
  • 2018-03. A vision-based system for robotic inspection of marine vessels in SIGNAL, IMAGE AND VIDEO PROCESSING
  • 1995-09. Support-vector networks in MACHINE LEARNING
  • 2013. Music Genre Recognition Using Gabor Filters and LPQ Texture Descriptors in PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS
  • 2013-09. Photo-mosaicing of images of pipe inner surface in SIGNAL, IMAGE AND VIDEO PROCESSING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11760-019-01435-2

    DOI

    http://dx.doi.org/10.1007/s11760-019-01435-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112069044


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Federal University of Paran\u00e1", 
              "id": "https://www.grid.ac/institutes/grid.20736.30", 
              "name": [
                "Federal University of Paran\u00e1, Curitiba, PR, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vriesman", 
            "givenName": "Daniel", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1", 
              "id": "https://www.grid.ac/institutes/grid.412522.2", 
              "name": [
                "Pontifical Catholic University of Paran\u00e1, Curitiba, PR, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Britto", 
            "givenName": "Alceu S.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technische Hochschule Ingolstadt", 
              "id": "https://www.grid.ac/institutes/grid.454235.1", 
              "name": [
                "Federal University of Paran\u00e1, Curitiba, PR, Brazil", 
                "Technische Hochschule Ingolstadt, Ingolstadt, BV, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zimmer", 
            "givenName": "Alessandro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole de Technologie Sup\u00e9rieure", 
              "id": "https://www.grid.ac/institutes/grid.459234.d", 
              "name": [
                "\u00c9cole de Technologie Sup\u00e9rieure, Universit\u00e9 du Qu\u00e9bec, Montr\u00e9al, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koerich", 
            "givenName": "Alessandro L.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Lactec Institute, Curitiba, PR, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paludo", 
            "givenName": "Rodrigo", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.proeng.2016.07.416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001248544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-69905-7_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009665193", 
              "https://doi.org/10.1007/978-3-540-69905-7_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-69905-7_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009665193", 
              "https://doi.org/10.1007/978-3-540-69905-7_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.imavis.2011.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010042593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2015.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011046713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sigpro.2012.04.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017171005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-41827-3_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017719759", 
              "https://doi.org/10.1007/978-3-642-41827-3_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(02)00030-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020841916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150743", 
              "https://doi.org/10.1007/bf00994018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-1809.1936.tb02137.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036660865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.autcon.2005.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041290736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.autcon.2005.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041290736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11760-011-0275-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041688758", 
              "https://doi.org/10.1007/s11760-011-0275-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2015.03.039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042237435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2012.07.074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043267745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0262-8856(02)00152-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044160456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0262-8856(02)00152-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044160456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2011.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048032767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2016.2591520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061541669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061792707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-017-0934-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085720780", 
              "https://doi.org/10.1007/s10586-017-0934-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0179161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085934122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bspc.2017.06.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090576794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11760-017-1181-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091907827", 
              "https://doi.org/10.1007/s11760-017-1181-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1092534050", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-81-322-3751-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092534050", 
              "https://doi.org/10.1007/978-81-322-3751-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cybvis.1996.629454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093256832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iecon.2012.6388523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094941349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/carpi.2014.7030052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095032063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icsipa.2015.7412188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095665120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iecon.2011.6119655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095686302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iecon.2006.347618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095694100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iecon.2006.347618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095694100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ijcnn.2012.6252626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095797196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2139/ssrn.433840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102197368"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-11", 
        "datePublishedReg": "2019-02-11", 
        "description": "This paper presents the main aspects of the design of an image acquisition and processing approach that can be inserted into thermoelectric metal pipe systems and travel inside the pipes to capture images from the inner surface of such pipes for further analysis. After the image capture, a preprocessing is applied based on iris recognition, which transforms the image from a Cartesian coordinate system to a polar coordinate system, which allows a better texture analysis of the internal surface of the pipe. The extracted information is used to train a classifier capable of automatically identifying segments that present some type of corrosion or defects. The experimental results in a dataset of 6150 images using two textural features have shown that the proposed classification approach can achieve accuracy between 96 and 98% in the test set.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11760-019-01435-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050964", 
            "issn": [
              "1863-1703", 
              "1863-1711"
            ], 
            "name": "Signal, Image and Video Processing", 
            "type": "Periodical"
          }
        ], 
        "name": "Automatic visual inspection of thermoelectric metal pipes", 
        "pagination": "1-9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9a46c8432316c83b7c541f67be869b95985c7a9bcc6dbb3d0e2198f6c2a906f2"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11760-019-01435-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112069044"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11760-019-01435-2", 
          "https://app.dimensions.ai/details/publication/pub.1112069044"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000334_0000000334/records_127800_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11760-019-01435-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-019-01435-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-019-01435-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-019-01435-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-019-01435-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    189 TRIPLES      21 PREDICATES      55 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11760-019-01435-2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Na38dc510f2a846f4933bb0ab9f1eb968
    4 schema:citation sg:pub.10.1007/978-3-540-69905-7_27
    5 sg:pub.10.1007/978-3-642-41827-3_9
    6 sg:pub.10.1007/978-81-322-3751-8
    7 sg:pub.10.1007/bf00994018
    8 sg:pub.10.1007/s10586-017-0934-0
    9 sg:pub.10.1007/s11760-011-0275-z
    10 sg:pub.10.1007/s11760-017-1181-9
    11 https://app.dimensions.ai/details/publication/pub.1092534050
    12 https://doi.org/10.1016/j.asoc.2015.03.039
    13 https://doi.org/10.1016/j.autcon.2005.02.005
    14 https://doi.org/10.1016/j.bspc.2017.06.010
    15 https://doi.org/10.1016/j.engfailanal.2011.06.007
    16 https://doi.org/10.1016/j.eswa.2012.07.074
    17 https://doi.org/10.1016/j.imavis.2011.02.002
    18 https://doi.org/10.1016/j.patcog.2015.12.003
    19 https://doi.org/10.1016/j.proeng.2016.07.416
    20 https://doi.org/10.1016/j.sigpro.2012.04.023
    21 https://doi.org/10.1016/s0031-3203(02)00030-4
    22 https://doi.org/10.1016/s0262-8856(02)00152-x
    23 https://doi.org/10.1109/carpi.2014.7030052
    24 https://doi.org/10.1109/cybvis.1996.629454
    25 https://doi.org/10.1109/icsipa.2015.7412188
    26 https://doi.org/10.1109/iecon.2006.347618
    27 https://doi.org/10.1109/iecon.2011.6119655
    28 https://doi.org/10.1109/iecon.2012.6388523
    29 https://doi.org/10.1109/ijcnn.2012.6252626
    30 https://doi.org/10.1109/tcbb.2016.2591520
    31 https://doi.org/10.1109/tsmc.1973.4309314
    32 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
    33 https://doi.org/10.1371/journal.pone.0179161
    34 https://doi.org/10.2139/ssrn.433840
    35 schema:datePublished 2019-02-11
    36 schema:datePublishedReg 2019-02-11
    37 schema:description This paper presents the main aspects of the design of an image acquisition and processing approach that can be inserted into thermoelectric metal pipe systems and travel inside the pipes to capture images from the inner surface of such pipes for further analysis. After the image capture, a preprocessing is applied based on iris recognition, which transforms the image from a Cartesian coordinate system to a polar coordinate system, which allows a better texture analysis of the internal surface of the pipe. The extracted information is used to train a classifier capable of automatically identifying segments that present some type of corrosion or defects. The experimental results in a dataset of 6150 images using two textural features have shown that the proposed classification approach can achieve accuracy between 96 and 98% in the test set.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf sg:journal.1050964
    42 schema:name Automatic visual inspection of thermoelectric metal pipes
    43 schema:pagination 1-9
    44 schema:productId N0fe1b8e058594122b03be6fa129556e0
    45 N55e3f8080104409aa1c66c2d34fa296e
    46 Nd899e684ff854b0ebe9a628a6a263f0e
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112069044
    48 https://doi.org/10.1007/s11760-019-01435-2
    49 schema:sdDatePublished 2019-04-11T09:04
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N597192fa74554de7b60eda429801f90a
    52 schema:url https://link.springer.com/10.1007%2Fs11760-019-01435-2
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N00c045a475a74ef1a9958e52656f9a39 rdf:first Ne95e6b76e448491b81afac7b59ec840e
    57 rdf:rest Nd57535c4981448a68654457e5824e037
    58 N0fe1b8e058594122b03be6fa129556e0 schema:name readcube_id
    59 schema:value 9a46c8432316c83b7c541f67be869b95985c7a9bcc6dbb3d0e2198f6c2a906f2
    60 rdf:type schema:PropertyValue
    61 N1b24f323aaa64bb8947de1529e966956 rdf:first N66a09e3cc7674396ad7ae4d9c590757a
    62 rdf:rest rdf:nil
    63 N2fb2c6a7eb844f218014b606cb7d6026 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
    64 schema:familyName Vriesman
    65 schema:givenName Daniel
    66 rdf:type schema:Person
    67 N4d5a75e22d0a40ff91a52acc7744359d schema:name Lactec Institute, Curitiba, PR, Brazil
    68 rdf:type schema:Organization
    69 N55c9159e7ba64c41b5371365d2164c26 schema:affiliation https://www.grid.ac/institutes/grid.459234.d
    70 schema:familyName Koerich
    71 schema:givenName Alessandro L.
    72 rdf:type schema:Person
    73 N55e3f8080104409aa1c66c2d34fa296e schema:name dimensions_id
    74 schema:value pub.1112069044
    75 rdf:type schema:PropertyValue
    76 N597192fa74554de7b60eda429801f90a schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N66a09e3cc7674396ad7ae4d9c590757a schema:affiliation N4d5a75e22d0a40ff91a52acc7744359d
    79 schema:familyName Paludo
    80 schema:givenName Rodrigo
    81 rdf:type schema:Person
    82 Na38dc510f2a846f4933bb0ab9f1eb968 rdf:first N2fb2c6a7eb844f218014b606cb7d6026
    83 rdf:rest N00c045a475a74ef1a9958e52656f9a39
    84 Nd3f733643c284f729ad774565a2f820d schema:affiliation https://www.grid.ac/institutes/grid.454235.1
    85 schema:familyName Zimmer
    86 schema:givenName Alessandro
    87 rdf:type schema:Person
    88 Nd57535c4981448a68654457e5824e037 rdf:first Nd3f733643c284f729ad774565a2f820d
    89 rdf:rest Nf27a57c899834f8b8d3d53bdfa6b8356
    90 Nd899e684ff854b0ebe9a628a6a263f0e schema:name doi
    91 schema:value 10.1007/s11760-019-01435-2
    92 rdf:type schema:PropertyValue
    93 Ne95e6b76e448491b81afac7b59ec840e schema:affiliation https://www.grid.ac/institutes/grid.412522.2
    94 schema:familyName Britto
    95 schema:givenName Alceu S.
    96 rdf:type schema:Person
    97 Nf27a57c899834f8b8d3d53bdfa6b8356 rdf:first N55c9159e7ba64c41b5371365d2164c26
    98 rdf:rest N1b24f323aaa64bb8947de1529e966956
    99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Information and Computing Sciences
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Artificial Intelligence and Image Processing
    104 rdf:type schema:DefinedTerm
    105 sg:journal.1050964 schema:issn 1863-1703
    106 1863-1711
    107 schema:name Signal, Image and Video Processing
    108 rdf:type schema:Periodical
    109 sg:pub.10.1007/978-3-540-69905-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009665193
    110 https://doi.org/10.1007/978-3-540-69905-7_27
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/978-3-642-41827-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017719759
    113 https://doi.org/10.1007/978-3-642-41827-3_9
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-81-322-3751-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092534050
    116 https://doi.org/10.1007/978-81-322-3751-8
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
    119 https://doi.org/10.1007/bf00994018
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s10586-017-0934-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085720780
    122 https://doi.org/10.1007/s10586-017-0934-0
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s11760-011-0275-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041688758
    125 https://doi.org/10.1007/s11760-011-0275-z
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s11760-017-1181-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091907827
    128 https://doi.org/10.1007/s11760-017-1181-9
    129 rdf:type schema:CreativeWork
    130 https://app.dimensions.ai/details/publication/pub.1092534050 schema:CreativeWork
    131 https://doi.org/10.1016/j.asoc.2015.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042237435
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.autcon.2005.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041290736
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.bspc.2017.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090576794
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.engfailanal.2011.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048032767
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.eswa.2012.07.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043267745
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.imavis.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010042593
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.patcog.2015.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011046713
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.proeng.2016.07.416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001248544
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.sigpro.2012.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017171005
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/s0031-3203(02)00030-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020841916
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/s0262-8856(02)00152-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044160456
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/carpi.2014.7030052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095032063
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/cybvis.1996.629454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093256832
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/icsipa.2015.7412188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095665120
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/iecon.2006.347618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095694100
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/iecon.2011.6119655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095686302
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/iecon.2012.6388523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094941349
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/ijcnn.2012.6252626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095797196
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/tcbb.2016.2591520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541669
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660865
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1371/journal.pone.0179161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085934122
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.2139/ssrn.433840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102197368
    176 rdf:type schema:CreativeWork
    177 https://www.grid.ac/institutes/grid.20736.30 schema:alternateName Federal University of Paraná
    178 schema:name Federal University of Paraná, Curitiba, PR, Brazil
    179 rdf:type schema:Organization
    180 https://www.grid.ac/institutes/grid.412522.2 schema:alternateName Pontifícia Universidade Católica do Paraná
    181 schema:name Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
    182 rdf:type schema:Organization
    183 https://www.grid.ac/institutes/grid.454235.1 schema:alternateName Technische Hochschule Ingolstadt
    184 schema:name Federal University of Paraná, Curitiba, PR, Brazil
    185 Technische Hochschule Ingolstadt, Ingolstadt, BV, Germany
    186 rdf:type schema:Organization
    187 https://www.grid.ac/institutes/grid.459234.d schema:alternateName École de Technologie Supérieure
    188 schema:name École de Technologie Supérieure, Université du Québec, Montréal, QC, Canada
    189 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...