A signal-to-image transformation approach for EEG and MEG signal classification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Bahar Hatipoglu, Cagatay Murat Yilmaz, Cemal Kose

ABSTRACT

The classification of magnetic signals has become one of the challenging research problems in brain computer interfaces (BCIs). Magnetic signals, as measured with electroencephalography (EEG) and magnetoencephalography (MEG), contain lots of additional information on the bioelectrical activity of the brain. In this paper, we propose a simple transformation method that utilises signal-to-image conversion. This conversion is a kind of finite amplitude frequency transformation based on the changing points of the signals. In other words, arbitrary time domain signals are converted to two-dimensional finite images, which are then used in the classification of the signals. In feature extraction, the Harris corner detector and scale-invariant feature transform are combined with the bag of visual words, and these features are then classified by using the k-nearest neighbour algorithm. To confirm the validity of the proposed method, experiments are conducted on the BCI Competition 2003 Datasets Ia and BCI Competition 2008 Dataset III. The classification accuracy of the proposed method is over 96.21% for Dataset Ia and 78.99% for Dataset III. It is apparent from the results that the EEG and MEG signals are quite successfully classified by employing the proposed method. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11760-018-1373-y

DOI

http://dx.doi.org/10.1007/s11760-018-1373-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107481530


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karadeniz Technical University", 
          "id": "https://www.grid.ac/institutes/grid.31564.35", 
          "name": [
            "Department of Computer Engineering, Karadeniz Technical University, Trabzon, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hatipoglu", 
        "givenName": "Bahar", 
        "id": "sg:person.014275115543.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014275115543.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karadeniz Technical University", 
          "id": "https://www.grid.ac/institutes/grid.31564.35", 
          "name": [
            "Department of Computer Engineering, Karadeniz Technical University, Trabzon, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yilmaz", 
        "givenName": "Cagatay Murat", 
        "id": "sg:person.015170230267.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170230267.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karadeniz Technical University", 
          "id": "https://www.grid.ac/institutes/grid.31564.35", 
          "name": [
            "Department of Computer Engineering, Karadeniz Technical University, Trabzon, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kose", 
        "givenName": "Cemal", 
        "id": "sg:person.0715413177.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715413177.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11760-016-0943-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001279206", 
          "https://doi.org/10.1007/s11760-016-0943-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-016-0943-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001279206", 
          "https://doi.org/10.1007/s11760-016-0943-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-011-0266-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005278752", 
          "https://doi.org/10.1007/s11760-011-0266-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1386352.1386388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006605321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4067/s0716-97602007000500005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008085340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2010.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010664607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-012-0871-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017615459", 
          "https://doi.org/10.1007/s11517-012-0871-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2012.00042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025154526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031081278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2007/97026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037760615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041575797", 
          "https://doi.org/10.1186/1471-2105-10-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041575797", 
          "https://doi.org/10.1186/1471-2105-10-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2007.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042146608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jbhi.2015.2491645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061277187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2004.826692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2004.827081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14257/ijsip.2016.9.3.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067241473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14257/ijsip.2016.9.3.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067241473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2009.5334472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077994170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2009.5334472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077994170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2009.5334472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077994170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-017-9494-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090933092", 
          "https://doi.org/10.1007/s12559-017-9494-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-017-9494-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090933092", 
          "https://doi.org/10.1007/s12559-017-9494-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2005.1416329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093225576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fskd.2007.552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094298893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bspc.2018.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103598823"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The classification of magnetic signals has become one of the challenging research problems in brain computer interfaces (BCIs). Magnetic signals, as measured with electroencephalography (EEG) and magnetoencephalography (MEG), contain lots of additional information on the bioelectrical activity of the brain. In this paper, we propose a simple transformation method that utilises signal-to-image conversion. This conversion is a kind of finite amplitude frequency transformation based on the changing points of the signals. In other words, arbitrary time domain signals are converted to two-dimensional finite images, which are then used in the classification of the signals. In feature extraction, the Harris corner detector and scale-invariant feature transform are combined with the bag of visual words, and these features are then classified by using the k-nearest neighbour algorithm. To confirm the validity of the proposed method, experiments are conducted on the BCI Competition 2003 Datasets Ia and BCI Competition 2008 Dataset III. The classification accuracy of the proposed method is over 96.21% for Dataset Ia and 78.99% for Dataset III. It is apparent from the results that the EEG and MEG signals are quite successfully classified by employing the proposed method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11760-018-1373-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050964", 
        "issn": [
          "1863-1703", 
          "1863-1711"
        ], 
        "name": "Signal, Image and Video Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "A signal-to-image transformation approach for EEG and MEG signal classification", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "699e0ae493c18624dc0def16440cc6e898b1aae8958345bc409390c8af81f699"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11760-018-1373-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107481530"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11760-018-1373-y", 
      "https://app.dimensions.ai/details/publication/pub.1107481530"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117091_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11760-018-1373-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-018-1373-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-018-1373-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-018-1373-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-018-1373-y'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11760-018-1373-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8b0550fd417b489d87658678dd53e4e5
4 schema:citation sg:pub.10.1007/s11517-012-0871-2
5 sg:pub.10.1007/s11760-011-0266-0
6 sg:pub.10.1007/s11760-016-0943-0
7 sg:pub.10.1007/s12559-017-9494-0
8 sg:pub.10.1186/1471-2105-10-4
9 https://doi.org/10.1016/j.bspc.2018.04.002
10 https://doi.org/10.1016/j.eswa.2010.04.043
11 https://doi.org/10.1016/j.measurement.2007.07.007
12 https://doi.org/10.1016/j.patrec.2010.04.009
13 https://doi.org/10.1109/fskd.2007.552
14 https://doi.org/10.1109/icassp.2005.1416329
15 https://doi.org/10.1109/iembs.2009.5334472
16 https://doi.org/10.1109/jbhi.2015.2491645
17 https://doi.org/10.1109/tbme.2004.826692
18 https://doi.org/10.1109/tbme.2004.827081
19 https://doi.org/10.1145/1386352.1386388
20 https://doi.org/10.1155/2007/97026
21 https://doi.org/10.14257/ijsip.2016.9.3.35
22 https://doi.org/10.3389/fnins.2012.00042
23 https://doi.org/10.4067/s0716-97602007000500005
24 schema:datePublished 2019-04
25 schema:datePublishedReg 2019-04-01
26 schema:description The classification of magnetic signals has become one of the challenging research problems in brain computer interfaces (BCIs). Magnetic signals, as measured with electroencephalography (EEG) and magnetoencephalography (MEG), contain lots of additional information on the bioelectrical activity of the brain. In this paper, we propose a simple transformation method that utilises signal-to-image conversion. This conversion is a kind of finite amplitude frequency transformation based on the changing points of the signals. In other words, arbitrary time domain signals are converted to two-dimensional finite images, which are then used in the classification of the signals. In feature extraction, the Harris corner detector and scale-invariant feature transform are combined with the bag of visual words, and these features are then classified by using the k-nearest neighbour algorithm. To confirm the validity of the proposed method, experiments are conducted on the BCI Competition 2003 Datasets Ia and BCI Competition 2008 Dataset III. The classification accuracy of the proposed method is over 96.21% for Dataset Ia and 78.99% for Dataset III. It is apparent from the results that the EEG and MEG signals are quite successfully classified by employing the proposed method.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N68b8e3bf97a6447082e74ed88a2cc9e5
31 N816a99a8f1234f6685afd34f60e616da
32 sg:journal.1050964
33 schema:name A signal-to-image transformation approach for EEG and MEG signal classification
34 schema:pagination 1-8
35 schema:productId N83eb40ea56a045f1ad998a794bb78152
36 Ne7691e9f6d8d41aa995a90526fb7ebef
37 Nf7ab15304c9b4133826e5fbd9a9d26a0
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107481530
39 https://doi.org/10.1007/s11760-018-1373-y
40 schema:sdDatePublished 2019-04-11T14:17
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N06ee30b453ce4e4b8f73304ae32cb71e
43 schema:url https://link.springer.com/10.1007%2Fs11760-018-1373-y
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N06ee30b453ce4e4b8f73304ae32cb71e schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N474dd28be0344debb2fafd265c9aa325 rdf:first sg:person.015170230267.84
50 rdf:rest Nb9dc9cd06b0f4db28f117681cc8e28eb
51 N68b8e3bf97a6447082e74ed88a2cc9e5 schema:volumeNumber 13
52 rdf:type schema:PublicationVolume
53 N816a99a8f1234f6685afd34f60e616da schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 N83eb40ea56a045f1ad998a794bb78152 schema:name dimensions_id
56 schema:value pub.1107481530
57 rdf:type schema:PropertyValue
58 N8b0550fd417b489d87658678dd53e4e5 rdf:first sg:person.014275115543.53
59 rdf:rest N474dd28be0344debb2fafd265c9aa325
60 Nb9dc9cd06b0f4db28f117681cc8e28eb rdf:first sg:person.0715413177.67
61 rdf:rest rdf:nil
62 Ne7691e9f6d8d41aa995a90526fb7ebef schema:name readcube_id
63 schema:value 699e0ae493c18624dc0def16440cc6e898b1aae8958345bc409390c8af81f699
64 rdf:type schema:PropertyValue
65 Nf7ab15304c9b4133826e5fbd9a9d26a0 schema:name doi
66 schema:value 10.1007/s11760-018-1373-y
67 rdf:type schema:PropertyValue
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:journal.1050964 schema:issn 1863-1703
75 1863-1711
76 schema:name Signal, Image and Video Processing
77 rdf:type schema:Periodical
78 sg:person.014275115543.53 schema:affiliation https://www.grid.ac/institutes/grid.31564.35
79 schema:familyName Hatipoglu
80 schema:givenName Bahar
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014275115543.53
82 rdf:type schema:Person
83 sg:person.015170230267.84 schema:affiliation https://www.grid.ac/institutes/grid.31564.35
84 schema:familyName Yilmaz
85 schema:givenName Cagatay Murat
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170230267.84
87 rdf:type schema:Person
88 sg:person.0715413177.67 schema:affiliation https://www.grid.ac/institutes/grid.31564.35
89 schema:familyName Kose
90 schema:givenName Cemal
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715413177.67
92 rdf:type schema:Person
93 sg:pub.10.1007/s11517-012-0871-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017615459
94 https://doi.org/10.1007/s11517-012-0871-2
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s11760-011-0266-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005278752
97 https://doi.org/10.1007/s11760-011-0266-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s11760-016-0943-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001279206
100 https://doi.org/10.1007/s11760-016-0943-0
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s12559-017-9494-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090933092
103 https://doi.org/10.1007/s12559-017-9494-0
104 rdf:type schema:CreativeWork
105 sg:pub.10.1186/1471-2105-10-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041575797
106 https://doi.org/10.1186/1471-2105-10-4
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.bspc.2018.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103598823
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.eswa.2010.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031081278
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.measurement.2007.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042146608
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.patrec.2010.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010664607
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/fskd.2007.552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094298893
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/icassp.2005.1416329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093225576
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/iembs.2009.5334472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077994170
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/jbhi.2015.2491645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061277187
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/tbme.2004.826692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526103
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/tbme.2004.827081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526117
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1145/1386352.1386388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006605321
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1155/2007/97026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037760615
131 rdf:type schema:CreativeWork
132 https://doi.org/10.14257/ijsip.2016.9.3.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067241473
133 rdf:type schema:CreativeWork
134 https://doi.org/10.3389/fnins.2012.00042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025154526
135 rdf:type schema:CreativeWork
136 https://doi.org/10.4067/s0716-97602007000500005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008085340
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.31564.35 schema:alternateName Karadeniz Technical University
139 schema:name Department of Computer Engineering, Karadeniz Technical University, Trabzon, Turkey
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...