Enhanced zonal search algorithm for motion estimation in depth-map coding View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-29

AUTHORS

Byung Tae Oh

ABSTRACT

This paper presents a novel motion estimation scheme for depth-map coding. Depth map has a couple of different characteristics compared with the common color scene, and therefore, careful investigation of the conventional fast motion search schemes is required. In this paper, I first provide the necessity of the depth-oriented motion search scheme based on experiments and then analyze the problems of the conventional methods. On the basis of the analysis, I propose to use the initial position refinement step during a motion search. In detail, the modification of the one-at-a-time search scheme is proposed for improvement of the prediction accuracy, and an initial direction selection and a 1-bit transform scheme follow for complexity reduction. The experimental results show that the proposed scheme can achieve coding gains of more than 3% on average over the state-of-the-art zonal search methods while keeping the overall complexity increase low. More... »

PAGES

523-530

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11760-017-1188-2

DOI

http://dx.doi.org/10.1007/s11760-017-1188-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091994872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Aerospace University, Goyang, Korea", 
          "id": "http://www.grid.ac/institutes/grid.440941.c", 
          "name": [
            "Korea Aerospace University, Goyang, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Byung Tae", 
        "id": "sg:person.011256733647.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256733647.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11760-011-0283-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045679921", 
          "https://doi.org/10.1007/s11760-011-0283-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-014-0407-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011658653", 
          "https://doi.org/10.1007/s11554-014-0407-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13640-015-0058-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045234963", 
          "https://doi.org/10.1186/s13640-015-0058-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-014-0723-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015556876", 
          "https://doi.org/10.1007/s11760-014-0723-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-016-1050-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001365269", 
          "https://doi.org/10.1007/s11760-016-1050-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-016-0906-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032969914", 
          "https://doi.org/10.1007/s11760-016-0906-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-29", 
    "datePublishedReg": "2017-09-29", 
    "description": "This paper presents a novel motion estimation scheme for depth-map coding. Depth map has a couple of different characteristics compared with the common color scene, and therefore, careful investigation of the conventional fast motion search schemes is required. In this paper, I first provide the necessity of the depth-oriented motion search scheme based on experiments and then analyze the problems of the conventional methods. On the basis of the analysis, I propose to use the initial position refinement step during a motion search. In detail, the modification of the one-at-a-time search scheme is proposed for improvement of the prediction accuracy, and an initial direction selection and a 1-bit transform scheme follow for complexity reduction. The experimental results show that the proposed scheme can achieve coding gains of more than 3% on average over the state-of-the-art zonal search methods while keeping the overall complexity increase low.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11760-017-1188-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050964", 
        "issn": [
          "1863-1703", 
          "1863-1711"
        ], 
        "name": "Signal, Image and Video Processing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "depth map coding", 
      "search scheme", 
      "motion estimation scheme", 
      "overall complexity increases", 
      "motion search", 
      "depth map", 
      "motion estimation", 
      "search algorithm", 
      "refinement step", 
      "search method", 
      "color scenes", 
      "complexity reduction", 
      "complexity increases", 
      "transform scheme", 
      "prediction accuracy", 
      "direction selection", 
      "coding", 
      "experimental results", 
      "scheme", 
      "estimation scheme", 
      "different characteristics", 
      "algorithm", 
      "scene", 
      "conventional methods", 
      "accuracy", 
      "search", 
      "method", 
      "maps", 
      "estimation", 
      "selection", 
      "step", 
      "experiments", 
      "detail", 
      "necessity", 
      "improvement", 
      "state", 
      "results", 
      "gain", 
      "basis", 
      "problem", 
      "careful investigation", 
      "characteristics", 
      "analysis", 
      "modification", 
      "couples", 
      "reduction", 
      "investigation", 
      "increase", 
      "paper"
    ], 
    "name": "Enhanced zonal search algorithm for motion estimation in depth-map coding", 
    "pagination": "523-530", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091994872"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11760-017-1188-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11760-017-1188-2", 
      "https://app.dimensions.ai/details/publication/pub.1091994872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_725.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11760-017-1188-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1188-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1188-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1188-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1188-2'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      79 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11760-017-1188-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndd3700ac9c8f43ca90fe30265b27a35c
4 schema:citation sg:pub.10.1007/s11554-014-0407-0
5 sg:pub.10.1007/s11760-011-0283-z
6 sg:pub.10.1007/s11760-014-0723-7
7 sg:pub.10.1007/s11760-016-0906-5
8 sg:pub.10.1007/s11760-016-1050-y
9 sg:pub.10.1186/s13640-015-0058-5
10 schema:datePublished 2017-09-29
11 schema:datePublishedReg 2017-09-29
12 schema:description This paper presents a novel motion estimation scheme for depth-map coding. Depth map has a couple of different characteristics compared with the common color scene, and therefore, careful investigation of the conventional fast motion search schemes is required. In this paper, I first provide the necessity of the depth-oriented motion search scheme based on experiments and then analyze the problems of the conventional methods. On the basis of the analysis, I propose to use the initial position refinement step during a motion search. In detail, the modification of the one-at-a-time search scheme is proposed for improvement of the prediction accuracy, and an initial direction selection and a 1-bit transform scheme follow for complexity reduction. The experimental results show that the proposed scheme can achieve coding gains of more than 3% on average over the state-of-the-art zonal search methods while keeping the overall complexity increase low.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N4cd32ba3f4bd4887a09707bf0ded0101
16 Nfa12632d4780489980b4ca0bfe2a3817
17 sg:journal.1050964
18 schema:keywords accuracy
19 algorithm
20 analysis
21 basis
22 careful investigation
23 characteristics
24 coding
25 color scenes
26 complexity increases
27 complexity reduction
28 conventional methods
29 couples
30 depth map
31 depth map coding
32 detail
33 different characteristics
34 direction selection
35 estimation
36 estimation scheme
37 experimental results
38 experiments
39 gain
40 improvement
41 increase
42 investigation
43 maps
44 method
45 modification
46 motion estimation
47 motion estimation scheme
48 motion search
49 necessity
50 overall complexity increases
51 paper
52 prediction accuracy
53 problem
54 reduction
55 refinement step
56 results
57 scene
58 scheme
59 search
60 search algorithm
61 search method
62 search scheme
63 selection
64 state
65 step
66 transform scheme
67 schema:name Enhanced zonal search algorithm for motion estimation in depth-map coding
68 schema:pagination 523-530
69 schema:productId N862ea5c2420c4d72938af8964df906c7
70 Nbf1189d6fb98459b86ee1426cf9818c1
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091994872
72 https://doi.org/10.1007/s11760-017-1188-2
73 schema:sdDatePublished 2022-11-24T21:01
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nc9305644ae92453a97e7bd6341c241c3
76 schema:url https://doi.org/10.1007/s11760-017-1188-2
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N4cd32ba3f4bd4887a09707bf0ded0101 schema:volumeNumber 12
81 rdf:type schema:PublicationVolume
82 N862ea5c2420c4d72938af8964df906c7 schema:name dimensions_id
83 schema:value pub.1091994872
84 rdf:type schema:PropertyValue
85 Nbf1189d6fb98459b86ee1426cf9818c1 schema:name doi
86 schema:value 10.1007/s11760-017-1188-2
87 rdf:type schema:PropertyValue
88 Nc9305644ae92453a97e7bd6341c241c3 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Ndd3700ac9c8f43ca90fe30265b27a35c rdf:first sg:person.011256733647.82
91 rdf:rest rdf:nil
92 Nfa12632d4780489980b4ca0bfe2a3817 schema:issueNumber 3
93 rdf:type schema:PublicationIssue
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:journal.1050964 schema:issn 1863-1703
101 1863-1711
102 schema:name Signal, Image and Video Processing
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.011256733647.82 schema:affiliation grid-institutes:grid.440941.c
106 schema:familyName Oh
107 schema:givenName Byung Tae
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256733647.82
109 rdf:type schema:Person
110 sg:pub.10.1007/s11554-014-0407-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011658653
111 https://doi.org/10.1007/s11554-014-0407-0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11760-011-0283-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045679921
114 https://doi.org/10.1007/s11760-011-0283-z
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11760-014-0723-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015556876
117 https://doi.org/10.1007/s11760-014-0723-7
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11760-016-0906-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032969914
120 https://doi.org/10.1007/s11760-016-0906-5
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11760-016-1050-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001365269
123 https://doi.org/10.1007/s11760-016-1050-y
124 rdf:type schema:CreativeWork
125 sg:pub.10.1186/s13640-015-0058-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045234963
126 https://doi.org/10.1186/s13640-015-0058-5
127 rdf:type schema:CreativeWork
128 grid-institutes:grid.440941.c schema:alternateName Korea Aerospace University, Goyang, Korea
129 schema:name Korea Aerospace University, Goyang, Korea
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...