Adaptive search range control in H.265/HEVC with error propagation resilience and hierarchical adjustment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05-27

AUTHORS

Yiwen Xu, Qi Li, Jinling Chen, Tiesong Zhao

ABSTRACT

In the state-of-the-art video coding standards H.26 4/AVC and H.265/HEVC, adaptive search range (ASR) control has achieved a significant performance in reducing the computational complexity of motion estimation. Nevertheless, the application of ASR in adjacent coding units may bring error propagation, and the ASR values may vary subject to different layers in hierarchical prediction structure. Here we propose two separate algorithms for ASR in H.265/HEVC: an error propagation resilience algorithm that eliminates the rate-distortion (RD) loss due to error propagation, and a hierarchical range adjustment algorithm that adjusts the ASR values between hierarchical layers. Simulation results show that our methods greatly improve the RD performances of traditional ASR works whilst keeping almost intact complexity reductions. More... »

PAGES

1559-1566

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11760-017-1120-9

DOI

http://dx.doi.org/10.1007/s11760-017-1120-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085610233


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Physics and Information Engineering, Fuzhou University, 350116, Fuzhou, Fujian, China", 
          "id": "http://www.grid.ac/institutes/grid.411604.6", 
          "name": [
            "College of Physics and Information Engineering, Fuzhou University, 350116, Fuzhou, Fujian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Yiwen", 
        "id": "sg:person.013747306477.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747306477.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Physics and Information Engineering, Fuzhou University, 350116, Fuzhou, Fujian, China", 
          "id": "http://www.grid.ac/institutes/grid.411604.6", 
          "name": [
            "College of Physics and Information Engineering, Fuzhou University, 350116, Fuzhou, Fujian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Qi", 
        "id": "sg:person.015336204126.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015336204126.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Physics and Information Engineering, Fuzhou University, 350116, Fuzhou, Fujian, China", 
          "id": "http://www.grid.ac/institutes/grid.411604.6", 
          "name": [
            "College of Physics and Information Engineering, Fuzhou University, 350116, Fuzhou, Fujian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jinling", 
        "id": "sg:person.07673361470.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673361470.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, Fujian, China", 
          "id": "http://www.grid.ac/institutes/grid.411604.6", 
          "name": [
            "College of Physics and Information Engineering, Fuzhou University, 350116, Fuzhou, Fujian, China", 
            "Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, Fujian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Tiesong", 
        "id": "sg:person.011720244721.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720244721.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-05-27", 
    "datePublishedReg": "2017-05-27", 
    "description": "In the state-of-the-art video coding standards H.26 4/AVC and H.265/HEVC, adaptive search range (ASR) control has achieved a significant performance in reducing the computational complexity of motion estimation. Nevertheless, the application of ASR in adjacent coding units may bring error propagation, and the ASR values may vary subject to different layers in hierarchical prediction structure. Here we propose two separate algorithms for ASR in H.265/HEVC: an error propagation resilience algorithm that eliminates the rate-distortion (RD) loss due to error propagation, and a hierarchical range adjustment algorithm that adjusts the ASR values between hierarchical layers. Simulation results show that our methods greatly improve the RD performances of traditional ASR works whilst keeping almost intact complexity reductions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11760-017-1120-9", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8303155", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8305753", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8379857", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8301439", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050964", 
        "issn": [
          "1863-1703", 
          "1863-1711"
        ], 
        "name": "Signal, Image and Video Processing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "rate-distortion loss", 
      "hierarchical prediction structure", 
      "application of ASR", 
      "error propagation", 
      "resilience algorithm", 
      "RD performance", 
      "prediction structure", 
      "motion estimation", 
      "computational complexity", 
      "hierarchical layers", 
      "HEVC", 
      "significant performance", 
      "complexity reduction", 
      "separate algorithms", 
      "adjustment algorithm", 
      "algorithm", 
      "simulation results", 
      "range control", 
      "different layers", 
      "ASR", 
      "AVC", 
      "performance", 
      "complexity", 
      "hierarchical adjustment", 
      "applications", 
      "estimation", 
      "work", 
      "method", 
      "control", 
      "resilience", 
      "propagation", 
      "layer", 
      "state", 
      "results", 
      "units", 
      "values", 
      "structure", 
      "adjustment", 
      "loss", 
      "reduction", 
      "ASR values"
    ], 
    "name": "Adaptive search range control in H.265/HEVC with error propagation resilience and hierarchical adjustment", 
    "pagination": "1559-1566", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085610233"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11760-017-1120-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11760-017-1120-9", 
      "https://app.dimensions.ai/details/publication/pub.1085610233"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_721.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11760-017-1120-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1120-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1120-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1120-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1120-9'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      20 PREDICATES      65 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11760-017-1120-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf17bd925466a4225bbfefac963d81737
4 schema:datePublished 2017-05-27
5 schema:datePublishedReg 2017-05-27
6 schema:description In the state-of-the-art video coding standards H.26 4/AVC and H.265/HEVC, adaptive search range (ASR) control has achieved a significant performance in reducing the computational complexity of motion estimation. Nevertheless, the application of ASR in adjacent coding units may bring error propagation, and the ASR values may vary subject to different layers in hierarchical prediction structure. Here we propose two separate algorithms for ASR in H.265/HEVC: an error propagation resilience algorithm that eliminates the rate-distortion (RD) loss due to error propagation, and a hierarchical range adjustment algorithm that adjusts the ASR values between hierarchical layers. Simulation results show that our methods greatly improve the RD performances of traditional ASR works whilst keeping almost intact complexity reductions.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N36d55d5c5ffa427cae0fa624edc28c75
10 N51b61eedfdb44b84a4d857c65af2eadd
11 sg:journal.1050964
12 schema:keywords ASR
13 ASR values
14 AVC
15 HEVC
16 RD performance
17 adjustment
18 adjustment algorithm
19 algorithm
20 application of ASR
21 applications
22 complexity
23 complexity reduction
24 computational complexity
25 control
26 different layers
27 error propagation
28 estimation
29 hierarchical adjustment
30 hierarchical layers
31 hierarchical prediction structure
32 layer
33 loss
34 method
35 motion estimation
36 performance
37 prediction structure
38 propagation
39 range control
40 rate-distortion loss
41 reduction
42 resilience
43 resilience algorithm
44 results
45 separate algorithms
46 significant performance
47 simulation results
48 state
49 structure
50 units
51 values
52 work
53 schema:name Adaptive search range control in H.265/HEVC with error propagation resilience and hierarchical adjustment
54 schema:pagination 1559-1566
55 schema:productId N93f7982fdcbf4e78be2045ab262aa894
56 Nbbbf9b7c70b54bcbbd1e20ee8e434417
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085610233
58 https://doi.org/10.1007/s11760-017-1120-9
59 schema:sdDatePublished 2022-11-24T21:01
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nfbc39492075c491a9b95f7b9aa72b95d
62 schema:url https://doi.org/10.1007/s11760-017-1120-9
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N36d55d5c5ffa427cae0fa624edc28c75 schema:volumeNumber 11
67 rdf:type schema:PublicationVolume
68 N51b61eedfdb44b84a4d857c65af2eadd schema:issueNumber 8
69 rdf:type schema:PublicationIssue
70 N93f7982fdcbf4e78be2045ab262aa894 schema:name dimensions_id
71 schema:value pub.1085610233
72 rdf:type schema:PropertyValue
73 Nbbbf9b7c70b54bcbbd1e20ee8e434417 schema:name doi
74 schema:value 10.1007/s11760-017-1120-9
75 rdf:type schema:PropertyValue
76 Ncda41471731949ba836d251895f3e907 rdf:first sg:person.015336204126.02
77 rdf:rest Ndd1baa543f414f5697ed906c5f6436c1
78 Ndd1baa543f414f5697ed906c5f6436c1 rdf:first sg:person.07673361470.19
79 rdf:rest Nf06bce1ae42a4e6d98a4844f47b146db
80 Nf06bce1ae42a4e6d98a4844f47b146db rdf:first sg:person.011720244721.23
81 rdf:rest rdf:nil
82 Nf17bd925466a4225bbfefac963d81737 rdf:first sg:person.013747306477.27
83 rdf:rest Ncda41471731949ba836d251895f3e907
84 Nfbc39492075c491a9b95f7b9aa72b95d schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
90 schema:name Artificial Intelligence and Image Processing
91 rdf:type schema:DefinedTerm
92 sg:grant.8301439 http://pending.schema.org/fundedItem sg:pub.10.1007/s11760-017-1120-9
93 rdf:type schema:MonetaryGrant
94 sg:grant.8303155 http://pending.schema.org/fundedItem sg:pub.10.1007/s11760-017-1120-9
95 rdf:type schema:MonetaryGrant
96 sg:grant.8305753 http://pending.schema.org/fundedItem sg:pub.10.1007/s11760-017-1120-9
97 rdf:type schema:MonetaryGrant
98 sg:grant.8379857 http://pending.schema.org/fundedItem sg:pub.10.1007/s11760-017-1120-9
99 rdf:type schema:MonetaryGrant
100 sg:journal.1050964 schema:issn 1863-1703
101 1863-1711
102 schema:name Signal, Image and Video Processing
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.011720244721.23 schema:affiliation grid-institutes:grid.411604.6
106 schema:familyName Zhao
107 schema:givenName Tiesong
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720244721.23
109 rdf:type schema:Person
110 sg:person.013747306477.27 schema:affiliation grid-institutes:grid.411604.6
111 schema:familyName Xu
112 schema:givenName Yiwen
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747306477.27
114 rdf:type schema:Person
115 sg:person.015336204126.02 schema:affiliation grid-institutes:grid.411604.6
116 schema:familyName Li
117 schema:givenName Qi
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015336204126.02
119 rdf:type schema:Person
120 sg:person.07673361470.19 schema:affiliation grid-institutes:grid.411604.6
121 schema:familyName Chen
122 schema:givenName Jinling
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673361470.19
124 rdf:type schema:Person
125 grid-institutes:grid.411604.6 schema:alternateName College of Physics and Information Engineering, Fuzhou University, 350116, Fuzhou, Fujian, China
126 Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, Fujian, China
127 schema:name College of Physics and Information Engineering, Fuzhou University, 350116, Fuzhou, Fujian, China
128 Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, Fujian, China
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...