Video fire detection based on Gaussian Mixture Model and multi-color features View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11

AUTHORS

Xian-Feng Han, Jesse S. Jin, Ming-Jie Wang, Wei Jiang, Lei Gao, Li-Ping Xiao

ABSTRACT

This paper proposes a new approach to detect fire from a video stream. It takes full advantage of the motion feature and color information of fire. Firstly, motion detection using Gaussian Mixture Model-based background subtraction is applied to extract moving objects from a video stream. Then, multi-color-based detection combining the RGB, HSI and YUV color space is employed to obtain possible fire regions. Finally, the results of the above two steps are combined to identify the accurate fire areas. The experimental results obtained by applying this method on different fire videos show that the proposed method can achieve better effectiveness, adaptability and robustness. More... »

PAGES

1419-1425

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11760-017-1102-y

DOI

http://dx.doi.org/10.1007/s11760-017-1102-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085103968


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Tianjin University, 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Xian-Feng", 
        "id": "sg:person.010077247373.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077247373.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Tianjin University, 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Jesse S.", 
        "id": "sg:person.01003336263.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003336263.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Tianjin University, 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ming-Jie", 
        "id": "sg:person.07353643273.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07353643273.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Tianjin University, 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Wei", 
        "id": "sg:person.013137125673.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013137125673.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Key Laboratory of Science and Technology on Aerospace Intelligent Control, 100085, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Lei", 
        "id": "sg:person.015767415235.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767415235.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Key Laboratory of Science and Technology on Aerospace Intelligent Control, 100085, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Li-Ping", 
        "id": "sg:person.010061724435.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010061724435.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.firesaf.2008.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003839334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008014656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008014656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-015-2990-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012533520", 
          "https://doi.org/10.1007/s11042-015-2990-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2009.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013419526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17691-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014662881", 
          "https://doi.org/10.1007/978-3-642-17691-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17691-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014662881", 
          "https://doi.org/10.1007/978-3-642-17691-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-009-0106-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015504964", 
          "https://doi.org/10.1007/s10694-009-0106-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-009-0106-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015504964", 
          "https://doi.org/10.1007/s10694-009-0106-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-014-0738-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016133140", 
          "https://doi.org/10.1007/s11760-014-0738-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvcir.2006.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027605614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2010.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028060171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dsp.2013.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033708337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037490657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijleo.2013.05.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038447995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2006.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043898027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s120505670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048311062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-015-0789-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049117505", 
          "https://doi.org/10.1007/s11760-015-0789-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2008.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051305130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2010.2045813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061575547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2013.2258353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.626.52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071977802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/9381-3817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072607953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccpct.2014.7054883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093535717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmlc.2009.5212165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093679350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1999.784637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094776080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robionetics.2013.6743589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094802141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iih-msp.2006.265017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095220380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2004.1421401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095616780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wacv.2000.895426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095787704"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "This paper proposes a new approach to detect fire from a video stream. It takes full advantage of the motion feature and color information of fire. Firstly, motion detection using Gaussian Mixture Model-based background subtraction is applied to extract moving objects from a video stream. Then, multi-color-based detection combining the RGB, HSI and YUV color space is employed to obtain possible fire regions. Finally, the results of the above two steps are combined to identify the accurate fire areas. The experimental results obtained by applying this method on different fire videos show that the proposed method can achieve better effectiveness, adaptability and robustness.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11760-017-1102-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050964", 
        "issn": [
          "1863-1703", 
          "1863-1711"
        ], 
        "name": "Signal, Image and Video Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Video fire detection based on Gaussian Mixture Model and multi-color features", 
    "pagination": "1419-1425", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1d22e9cdc07e9a4fba00228271473ec9b1f3cdee8997585d738725e1bfd413d7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11760-017-1102-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085103968"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11760-017-1102-y", 
      "https://app.dimensions.ai/details/publication/pub.1085103968"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89790_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11760-017-1102-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1102-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1102-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1102-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-017-1102-y'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11760-017-1102-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N21165725018d4f46aeee4a91170f3b9d
4 schema:citation sg:pub.10.1007/978-3-642-17691-3_9
5 sg:pub.10.1007/s10694-009-0106-8
6 sg:pub.10.1007/s11042-015-2990-x
7 sg:pub.10.1007/s11760-014-0738-0
8 sg:pub.10.1007/s11760-015-0789-x
9 https://doi.org/10.1016/j.buildenv.2009.10.017
10 https://doi.org/10.1016/j.dsp.2013.07.003
11 https://doi.org/10.1016/j.firesaf.2006.02.001
12 https://doi.org/10.1016/j.firesaf.2008.05.005
13 https://doi.org/10.1016/j.firesaf.2008.07.006
14 https://doi.org/10.1016/j.firesaf.2010.03.001
15 https://doi.org/10.1016/j.firesaf.2010.04.001
16 https://doi.org/10.1016/j.ijleo.2013.05.069
17 https://doi.org/10.1016/j.jvcir.2006.12.003
18 https://doi.org/10.1016/j.patrec.2005.06.015
19 https://doi.org/10.1109/cvpr.1999.784637
20 https://doi.org/10.1109/iccpct.2014.7054883
21 https://doi.org/10.1109/icip.2004.1421401
22 https://doi.org/10.1109/icmlc.2009.5212165
23 https://doi.org/10.1109/iih-msp.2006.265017
24 https://doi.org/10.1109/robionetics.2013.6743589
25 https://doi.org/10.1109/tcsvt.2010.2045813
26 https://doi.org/10.1109/tip.2013.2258353
27 https://doi.org/10.1109/wacv.2000.895426
28 https://doi.org/10.3390/s120505670
29 https://doi.org/10.4028/www.scientific.net/amm.626.52
30 https://doi.org/10.5120/9381-3817
31 schema:datePublished 2017-11
32 schema:datePublishedReg 2017-11-01
33 schema:description This paper proposes a new approach to detect fire from a video stream. It takes full advantage of the motion feature and color information of fire. Firstly, motion detection using Gaussian Mixture Model-based background subtraction is applied to extract moving objects from a video stream. Then, multi-color-based detection combining the RGB, HSI and YUV color space is employed to obtain possible fire regions. Finally, the results of the above two steps are combined to identify the accurate fire areas. The experimental results obtained by applying this method on different fire videos show that the proposed method can achieve better effectiveness, adaptability and robustness.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N654d6e605d224db38e55af2bbb03041b
38 Nb6a49294e05b48b69e019a6e9bf898bd
39 sg:journal.1050964
40 schema:name Video fire detection based on Gaussian Mixture Model and multi-color features
41 schema:pagination 1419-1425
42 schema:productId N9f0ac8802a2f4265b932aab663a5053e
43 Nc80b4476147d4569809eee3916aadbba
44 Nd6bc8526f794483ca0cdac55b64d6475
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085103968
46 https://doi.org/10.1007/s11760-017-1102-y
47 schema:sdDatePublished 2019-04-11T09:52
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N09a99e43943d486d9adecbf7aeb60dce
50 schema:url https://link.springer.com/10.1007%2Fs11760-017-1102-y
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N09a99e43943d486d9adecbf7aeb60dce schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N137f279d51b64cba9722a5b01525ed2e schema:name National Key Laboratory of Science and Technology on Aerospace Intelligent Control, 100085, Beijing, China
57 rdf:type schema:Organization
58 N21165725018d4f46aeee4a91170f3b9d rdf:first sg:person.010077247373.54
59 rdf:rest N35e9a6b79a4e4f838ddab1fe41e115ed
60 N35e9a6b79a4e4f838ddab1fe41e115ed rdf:first sg:person.01003336263.26
61 rdf:rest N6333935dc6724a868fe016d28d030afa
62 N4730ef91e8d5413889aa68920a72b9f4 rdf:first sg:person.010061724435.47
63 rdf:rest rdf:nil
64 N6333935dc6724a868fe016d28d030afa rdf:first sg:person.07353643273.80
65 rdf:rest N7aefce63edb64cb6a9c3b7606f17d5bb
66 N654d6e605d224db38e55af2bbb03041b schema:volumeNumber 11
67 rdf:type schema:PublicationVolume
68 N7aefce63edb64cb6a9c3b7606f17d5bb rdf:first sg:person.013137125673.74
69 rdf:rest N82b194d320754e88b2e5744dcc4b392b
70 N82b194d320754e88b2e5744dcc4b392b rdf:first sg:person.015767415235.25
71 rdf:rest N4730ef91e8d5413889aa68920a72b9f4
72 N9f0ac8802a2f4265b932aab663a5053e schema:name dimensions_id
73 schema:value pub.1085103968
74 rdf:type schema:PropertyValue
75 Nb6a49294e05b48b69e019a6e9bf898bd schema:issueNumber 8
76 rdf:type schema:PublicationIssue
77 Nc80b4476147d4569809eee3916aadbba schema:name readcube_id
78 schema:value 1d22e9cdc07e9a4fba00228271473ec9b1f3cdee8997585d738725e1bfd413d7
79 rdf:type schema:PropertyValue
80 Nd6bc8526f794483ca0cdac55b64d6475 schema:name doi
81 schema:value 10.1007/s11760-017-1102-y
82 rdf:type schema:PropertyValue
83 Nedbd863afdc5465ebe3cfc3d9a3cad19 schema:name National Key Laboratory of Science and Technology on Aerospace Intelligent Control, 100085, Beijing, China
84 rdf:type schema:Organization
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
89 schema:name Artificial Intelligence and Image Processing
90 rdf:type schema:DefinedTerm
91 sg:journal.1050964 schema:issn 1863-1703
92 1863-1711
93 schema:name Signal, Image and Video Processing
94 rdf:type schema:Periodical
95 sg:person.01003336263.26 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
96 schema:familyName Jin
97 schema:givenName Jesse S.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003336263.26
99 rdf:type schema:Person
100 sg:person.010061724435.47 schema:affiliation Nedbd863afdc5465ebe3cfc3d9a3cad19
101 schema:familyName Xiao
102 schema:givenName Li-Ping
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010061724435.47
104 rdf:type schema:Person
105 sg:person.010077247373.54 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
106 schema:familyName Han
107 schema:givenName Xian-Feng
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077247373.54
109 rdf:type schema:Person
110 sg:person.013137125673.74 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
111 schema:familyName Jiang
112 schema:givenName Wei
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013137125673.74
114 rdf:type schema:Person
115 sg:person.015767415235.25 schema:affiliation N137f279d51b64cba9722a5b01525ed2e
116 schema:familyName Gao
117 schema:givenName Lei
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767415235.25
119 rdf:type schema:Person
120 sg:person.07353643273.80 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
121 schema:familyName Wang
122 schema:givenName Ming-Jie
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07353643273.80
124 rdf:type schema:Person
125 sg:pub.10.1007/978-3-642-17691-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014662881
126 https://doi.org/10.1007/978-3-642-17691-3_9
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10694-009-0106-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015504964
129 https://doi.org/10.1007/s10694-009-0106-8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11042-015-2990-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012533520
132 https://doi.org/10.1007/s11042-015-2990-x
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11760-014-0738-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016133140
135 https://doi.org/10.1007/s11760-014-0738-0
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11760-015-0789-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049117505
138 https://doi.org/10.1007/s11760-015-0789-x
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.buildenv.2009.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013419526
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.dsp.2013.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033708337
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.firesaf.2006.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043898027
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.firesaf.2008.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003839334
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.firesaf.2008.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051305130
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.firesaf.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037490657
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.firesaf.2010.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028060171
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ijleo.2013.05.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038447995
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jvcir.2006.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027605614
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.patrec.2005.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008014656
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/cvpr.1999.784637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094776080
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/iccpct.2014.7054883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093535717
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/icip.2004.1421401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095616780
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/icmlc.2009.5212165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093679350
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/iih-msp.2006.265017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095220380
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/robionetics.2013.6743589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094802141
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tcsvt.2010.2045813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061575547
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tip.2013.2258353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643556
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/wacv.2000.895426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095787704
177 rdf:type schema:CreativeWork
178 https://doi.org/10.3390/s120505670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048311062
179 rdf:type schema:CreativeWork
180 https://doi.org/10.4028/www.scientific.net/amm.626.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071977802
181 rdf:type schema:CreativeWork
182 https://doi.org/10.5120/9381-3817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072607953
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
185 schema:name Tianjin University, 300072, Tianjin, China
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...