Three-dimensional interpolation methods to spatiotemporal EEG mapping during various behavioral states View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

Ibtihel Nouira, Asma Ben Abdallah, Mohamed Hedi Bedoui

ABSTRACT

This work applies a novel method called multiquadratic interpolation that represents a 3D brain activity following a spatiotemporal mode. It also develops other classical interpolation techniques (barycentric, spline), which are based on the calculation of the Euclidean distance between the estimated and measured electrodes. Then, it modifies these methods by substituting the Euclidean distance by the corresponding arc length. Starting from 19 real electrodes for generating the electroencephalogram (EEG) potential representations of healthy subjects having three different behavioral brain states, a 3D EEG mapping of 128 electrodes was obtained. The proposed multiquadratic interpolation is evaluated by comparing it with the other methods by calculating the root mean squared error and processing time means. More... »

PAGES

943-949

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11760-015-0844-7

DOI

http://dx.doi.org/10.1007/s11760-015-0844-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047863381


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "TIM Laboratory, Medicine Faculty of Monastir, 5019, Monastir, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nouira", 
        "givenName": "Ibtihel", 
        "id": "sg:person.011677620122.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011677620122.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "TIM Laboratory, Medicine Faculty of Monastir, 5019, Monastir, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abdallah", 
        "givenName": "Asma Ben", 
        "id": "sg:person.014617733143.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014617733143.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "TIM Laboratory, Medicine Faculty of Monastir, 5019, Monastir, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bedoui", 
        "givenName": "Mohamed Hedi", 
        "id": "sg:person.013205633441.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013205633441.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0013-4694(87)90141-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002363042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(87)90141-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002363042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-4809(84)80018-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005523493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bspc.2012.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009737190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-76404-2_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016671303", 
          "https://doi.org/10.1007/978-3-642-76404-2_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01186911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017379502", 
          "https://doi.org/10.1007/bf01186911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01186911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017379502", 
          "https://doi.org/10.1007/bf01186911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-006-0011-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017568943", 
          "https://doi.org/10.1007/s10548-006-0011-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-006-0011-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017568943", 
          "https://doi.org/10.1007/s10548-006-0011-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.1041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021487563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(89)90180-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031941842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(89)90180-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031941842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/813870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032436125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(81)90221-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037022437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(81)90221-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037022437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(96)95135-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038132525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fninf.2010.00119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049286677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(91)90204-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050160152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(91)90204-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050160152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.212068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623496303470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883551"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "This work applies a novel method called multiquadratic interpolation that represents a 3D brain activity following a spatiotemporal mode. It also develops other classical interpolation techniques (barycentric, spline), which are based on the calculation of the Euclidean distance between the estimated and measured electrodes. Then, it modifies these methods by substituting the Euclidean distance by the corresponding arc length. Starting from 19 real electrodes for generating the electroencephalogram (EEG) potential representations of healthy subjects having three different behavioral brain states, a 3D EEG mapping of 128 electrodes was obtained. The proposed multiquadratic interpolation is evaluated by comparing it with the other methods by calculating the root mean squared error and processing time means.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11760-015-0844-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050964", 
        "issn": [
          "1863-1703", 
          "1863-1711"
        ], 
        "name": "Signal, Image and Video Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Three-dimensional interpolation methods to spatiotemporal EEG mapping during various behavioral states", 
    "pagination": "943-949", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e40272f95abc756840a96c258b7d051bfaa86aa85aac35b51243b204daee5a87"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11760-015-0844-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047863381"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11760-015-0844-7", 
      "https://app.dimensions.ai/details/publication/pub.1047863381"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11760-015-0844-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-015-0844-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-015-0844-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-015-0844-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-015-0844-7'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11760-015-0844-7 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N3ac23030b6a14e1f990730af6025a3e7
4 schema:citation sg:pub.10.1007/978-3-642-76404-2_6
5 sg:pub.10.1007/bf01186911
6 sg:pub.10.1007/s10548-006-0011-0
7 https://doi.org/10.1002/hbm.1041
8 https://doi.org/10.1016/0013-4694(81)90221-2
9 https://doi.org/10.1016/0013-4694(87)90141-6
10 https://doi.org/10.1016/0013-4694(89)90180-6
11 https://doi.org/10.1016/0013-4694(91)90204-h
12 https://doi.org/10.1016/0013-4694(96)95135-4
13 https://doi.org/10.1016/j.bspc.2012.10.003
14 https://doi.org/10.1016/s0010-4809(84)80018-x
15 https://doi.org/10.1109/10.212068
16 https://doi.org/10.1137/s1052623496303470
17 https://doi.org/10.1155/2011/813870
18 https://doi.org/10.3389/fninf.2010.00119
19 schema:datePublished 2016-07
20 schema:datePublishedReg 2016-07-01
21 schema:description This work applies a novel method called multiquadratic interpolation that represents a 3D brain activity following a spatiotemporal mode. It also develops other classical interpolation techniques (barycentric, spline), which are based on the calculation of the Euclidean distance between the estimated and measured electrodes. Then, it modifies these methods by substituting the Euclidean distance by the corresponding arc length. Starting from 19 real electrodes for generating the electroencephalogram (EEG) potential representations of healthy subjects having three different behavioral brain states, a 3D EEG mapping of 128 electrodes was obtained. The proposed multiquadratic interpolation is evaluated by comparing it with the other methods by calculating the root mean squared error and processing time means.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N0bd43ec64b454362ae093c96a370813f
26 Ndaadb7750ba64dbf817d8aa2a4c14736
27 sg:journal.1050964
28 schema:name Three-dimensional interpolation methods to spatiotemporal EEG mapping during various behavioral states
29 schema:pagination 943-949
30 schema:productId N75048ec5718c4216812b0bef666a811c
31 N893132a66de343c1a63b9ada70651640
32 N9dd1b1c1da03468b972a24db67bcfabd
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047863381
34 https://doi.org/10.1007/s11760-015-0844-7
35 schema:sdDatePublished 2019-04-10T18:23
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nfd194aedc4bc41668a8511d75a6af70a
38 schema:url http://link.springer.com/10.1007%2Fs11760-015-0844-7
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0bd43ec64b454362ae093c96a370813f schema:issueNumber 5
43 rdf:type schema:PublicationIssue
44 N26696cdc6dfd408f82da66b21848edc9 rdf:first sg:person.014617733143.20
45 rdf:rest Nac3829f9eb644e8a85039dd36cc6c701
46 N3a61991d8ec9412f9b56a91685d4c2e4 schema:name TIM Laboratory, Medicine Faculty of Monastir, 5019, Monastir, Tunisia
47 rdf:type schema:Organization
48 N3ac23030b6a14e1f990730af6025a3e7 rdf:first sg:person.011677620122.08
49 rdf:rest N26696cdc6dfd408f82da66b21848edc9
50 N75048ec5718c4216812b0bef666a811c schema:name dimensions_id
51 schema:value pub.1047863381
52 rdf:type schema:PropertyValue
53 N7e9dc65462a846dbb8a3ba1a57d34acd schema:name TIM Laboratory, Medicine Faculty of Monastir, 5019, Monastir, Tunisia
54 rdf:type schema:Organization
55 N893132a66de343c1a63b9ada70651640 schema:name readcube_id
56 schema:value e40272f95abc756840a96c258b7d051bfaa86aa85aac35b51243b204daee5a87
57 rdf:type schema:PropertyValue
58 N9dd1b1c1da03468b972a24db67bcfabd schema:name doi
59 schema:value 10.1007/s11760-015-0844-7
60 rdf:type schema:PropertyValue
61 Nac3829f9eb644e8a85039dd36cc6c701 rdf:first sg:person.013205633441.43
62 rdf:rest rdf:nil
63 Nb5012cc03126413795aa2534576cd5a2 schema:name TIM Laboratory, Medicine Faculty of Monastir, 5019, Monastir, Tunisia
64 rdf:type schema:Organization
65 Ndaadb7750ba64dbf817d8aa2a4c14736 schema:volumeNumber 10
66 rdf:type schema:PublicationVolume
67 Nfd194aedc4bc41668a8511d75a6af70a schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
70 schema:name Medical and Health Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
73 schema:name Neurosciences
74 rdf:type schema:DefinedTerm
75 sg:journal.1050964 schema:issn 1863-1703
76 1863-1711
77 schema:name Signal, Image and Video Processing
78 rdf:type schema:Periodical
79 sg:person.011677620122.08 schema:affiliation N7e9dc65462a846dbb8a3ba1a57d34acd
80 schema:familyName Nouira
81 schema:givenName Ibtihel
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011677620122.08
83 rdf:type schema:Person
84 sg:person.013205633441.43 schema:affiliation N3a61991d8ec9412f9b56a91685d4c2e4
85 schema:familyName Bedoui
86 schema:givenName Mohamed Hedi
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013205633441.43
88 rdf:type schema:Person
89 sg:person.014617733143.20 schema:affiliation Nb5012cc03126413795aa2534576cd5a2
90 schema:familyName Abdallah
91 schema:givenName Asma Ben
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014617733143.20
93 rdf:type schema:Person
94 sg:pub.10.1007/978-3-642-76404-2_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016671303
95 https://doi.org/10.1007/978-3-642-76404-2_6
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01186911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017379502
98 https://doi.org/10.1007/bf01186911
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10548-006-0011-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017568943
101 https://doi.org/10.1007/s10548-006-0011-0
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1002/hbm.1041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021487563
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0013-4694(81)90221-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037022437
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0013-4694(87)90141-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002363042
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0013-4694(89)90180-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031941842
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0013-4694(91)90204-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1050160152
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0013-4694(96)95135-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038132525
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.bspc.2012.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009737190
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0010-4809(84)80018-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005523493
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/10.212068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084172
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1137/s1052623496303470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883551
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1155/2011/813870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032436125
124 rdf:type schema:CreativeWork
125 https://doi.org/10.3389/fninf.2010.00119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049286677
126 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...