Identification of precancerous lesions by multispectral gastroendoscopy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03

AUTHORS

Sergio E. Martinez-Herrera, Yannick Benezeth, Matthieu Boffety, Jean-François Emile, Franck Marzani, Dominique Lamarque, François Goudail

ABSTRACT

Gastric cancer is one of the fifth most deadly cancers worldwide. Nowadays the diagnosis is performed through gastroendoscopy under white light and histological analysis. However, the precancerous lesions are multifocalized and present low differences with respect to healthy tissue. Several systems have been proposed based on light tissue interaction to improve the visualization of malignancies. However, these systems are limited to few wavelengths. In this paper, we propose a minimally invasive technique based on multispectral imaging and a methodology to identify malignancies in the stomach. We developed a multispectral gastroendoscopic system compatible with current gastroendoscopes, where only the illumination is changed. The spectra are extracted from the acquired multispectral images in order to compute statistical features that are used to classify the data in two classes: healthy and malignant. The features are ranked by pooled variance t test to train three classifiers. Neural networks using generalized relevance learning vector quantization, support vector machine (SVM) with a Gaussian kernel and k-nn are evaluated using leave one patient out cross-validation. Taking into consideration the data collected in this work, the quantitative results from the classification using SVM show high accuracy and sensitivity using a low number of features. These results show the ability to discriminate malignancies of the gastric tissue. Therefore, multispectral imaging could help in the identification of malignancies during gastroendoscopy. More... »

PAGES

455-462

References to SciGraph publications

  • 2000-12-01. Ensemble Methods in Machine Learning in MULTIPLE CLASSIFIER SYSTEMS
  • 2006-06. Development of an Advanced Hyperspectral Imaging (HSI) System with Applications for Cancer Detection in ANNALS OF BIOMEDICAL ENGINEERING
  • 1992. Hierarchical model-based motion estimation in COMPUTER VISION — ECCV'92
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11760-015-0779-z

    DOI

    http://dx.doi.org/10.1007/s11760-015-0779-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001026587


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Versailles Saint-Quentin-en-Yvelines University", 
              "id": "https://www.grid.ac/institutes/grid.12832.3a", 
              "name": [
                "Institut d\u2019Optique Graduate School, 2 av. Augustin Fresnel, 91127, Palaiseau, France", 
                "Universit\u00e9 de Versailles-Saint-Quentin-en-Yvelines, 55 Avenue de Paris, 78000, Versailles, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martinez-Herrera", 
            "givenName": "Sergio E.", 
            "id": "sg:person.013554503013.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554503013.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Burgundy", 
              "id": "https://www.grid.ac/institutes/grid.5613.1", 
              "name": [
                "Le2i - UMR CNRS 6306, Universit\u00e9 de Bourgogne, 9 av. Alain Savary, 21078, Dijon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benezeth", 
            "givenName": "Yannick", 
            "id": "sg:person.016115557367.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016115557367.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut d\u2019Optique Graduate School", 
              "id": "https://www.grid.ac/institutes/grid.425181.b", 
              "name": [
                "Institut d\u2019Optique Graduate School, 2 av. Augustin Fresnel, 91127, Palaiseau, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boffety", 
            "givenName": "Matthieu", 
            "id": "sg:person.01155755143.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155755143.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Versailles Saint-Quentin-en-Yvelines University", 
              "id": "https://www.grid.ac/institutes/grid.12832.3a", 
              "name": [
                "Service d\u2019anatomie et pathologie, H\u00f4pital Ambroise Par\u00e9, 9 av. Charles de Gaulle, 92104, Boulogne-Billancourt, France", 
                "Universit\u00e9 de Versailles-Saint-Quentin-en-Yvelines, 55 Avenue de Paris, 78000, Versailles, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Emile", 
            "givenName": "Jean-Fran\u00e7ois", 
            "id": "sg:person.0610133233.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610133233.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Burgundy", 
              "id": "https://www.grid.ac/institutes/grid.5613.1", 
              "name": [
                "Le2i - UMR CNRS 6306, Universit\u00e9 de Bourgogne, 9 av. Alain Savary, 21078, Dijon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marzani", 
            "givenName": "Franck", 
            "id": "sg:person.07657000121.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657000121.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Versailles Saint-Quentin-en-Yvelines University", 
              "id": "https://www.grid.ac/institutes/grid.12832.3a", 
              "name": [
                "Service de Gastroendoscopy, H\u00f4pital Ambroise Par\u00e9, 9 av. Charles de Gaulle, 92104, Boulogne-Billancourt, France", 
                "Universit\u00e9 de Versailles-Saint-Quentin-en-Yvelines, 55 Avenue de Paris, 78000, Versailles, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lamarque", 
            "givenName": "Dominique", 
            "id": "sg:person.01060752353.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060752353.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut d\u2019Optique Graduate School", 
              "id": "https://www.grid.ac/institutes/grid.425181.b", 
              "name": [
                "Institut d\u2019Optique Graduate School, 2 av. Augustin Fresnel, 91127, Palaiseau, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goudail", 
            "givenName": "Fran\u00e7ois", 
            "id": "sg:person.0662564376.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662564376.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-45014-9_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000204280", 
              "https://doi.org/10.1007/3-540-45014-9_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45014-9_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000204280", 
              "https://doi.org/10.1007/3-540-45014-9_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.jbo.18.2.026010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001562796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-336156-1.50061-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003803373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5772/52655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004418224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.2009.10-08-892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009343907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2012.07.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015412183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2013.03.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018031667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1751-2980.2011.00550.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018505625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neunet.2013.11.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018609401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(02)00079-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022193802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781444397772.ch14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023678172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2010.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024693071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5772/22689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/16.10.906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029326163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-55426-2_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036175401", 
              "https://doi.org/10.1007/3-540-55426-2_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-006-9121-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036757176", 
              "https://doi.org/10.1007/s10439-006-9121-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-006-9121-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036757176", 
              "https://doi.org/10.1007/s10439-006-9121-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.1766301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037195886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.816917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037475916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gie.2008.01.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039788884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/2.1200906.1560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051253574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1055/s-2003-40228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057422651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/50/8/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059025965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.574797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2008.2011280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061610700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/12-aos1063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064393182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1366/0003702981944571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065265187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1366/0003702981944571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065265187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sitis.2012.125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094038965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cbms.2013.6627778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094204223"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-03", 
        "datePublishedReg": "2016-03-01", 
        "description": "Gastric cancer is one of the fifth most deadly cancers worldwide. Nowadays the diagnosis is performed through gastroendoscopy under white light and histological analysis. However, the precancerous lesions are multifocalized and present low differences with respect to healthy tissue. Several systems have been proposed based on light tissue interaction to improve the visualization of malignancies. However, these systems are limited to few wavelengths. In this paper, we propose a minimally invasive technique based on multispectral imaging and a methodology to identify malignancies in the stomach. We developed a multispectral gastroendoscopic system compatible with current gastroendoscopes, where only the illumination is changed. The spectra are extracted from the acquired multispectral images in order to compute statistical features that are used to classify the data in two classes: healthy and malignant. The features are ranked by pooled variance t test to train three classifiers. Neural networks using generalized relevance learning vector quantization, support vector machine (SVM) with a Gaussian kernel and k-nn are evaluated using leave one patient out cross-validation. Taking into consideration the data collected in this work, the quantitative results from the classification using SVM show high accuracy and sensitivity using a low number of features. These results show the ability to discriminate malignancies of the gastric tissue. Therefore, multispectral imaging could help in the identification of malignancies during gastroendoscopy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11760-015-0779-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050964", 
            "issn": [
              "1863-1703", 
              "1863-1711"
            ], 
            "name": "Signal, Image and Video Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Identification of precancerous lesions by multispectral gastroendoscopy", 
        "pagination": "455-462", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "04e44a3860cbb444232379f0026fa0ee9180f88763b2760dba73ca8912fb7501"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11760-015-0779-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001026587"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11760-015-0779-z", 
          "https://app.dimensions.ai/details/publication/pub.1001026587"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000519.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11760-015-0779-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-015-0779-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-015-0779-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-015-0779-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-015-0779-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    199 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11760-015-0779-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N4522239fcb314621a955b10fd1f79cfc
    4 schema:citation sg:pub.10.1007/3-540-45014-9_1
    5 sg:pub.10.1007/3-540-55426-2_27
    6 sg:pub.10.1007/s10439-006-9121-9
    7 https://doi.org/10.1002/9781444397772.ch14
    8 https://doi.org/10.1016/b978-0-12-336156-1.50061-6
    9 https://doi.org/10.1016/j.compmedimag.2010.07.001
    10 https://doi.org/10.1016/j.gie.2008.01.013
    11 https://doi.org/10.1016/j.neunet.2013.11.009
    12 https://doi.org/10.1016/j.patcog.2013.03.007
    13 https://doi.org/10.1016/j.patrec.2012.07.020
    14 https://doi.org/10.1016/s0893-6080(02)00079-5
    15 https://doi.org/10.1055/s-2003-40228
    16 https://doi.org/10.1088/0031-9155/50/8/004
    17 https://doi.org/10.1093/bioinformatics/16.10.906
    18 https://doi.org/10.1109/34.574797
    19 https://doi.org/10.1109/cbms.2013.6627778
    20 https://doi.org/10.1109/sitis.2012.125
    21 https://doi.org/10.1109/tgrs.2008.2011280
    22 https://doi.org/10.1111/j.1751-2980.2011.00550.x
    23 https://doi.org/10.1117/1.1766301
    24 https://doi.org/10.1117/1.jbo.18.2.026010
    25 https://doi.org/10.1117/12.816917
    26 https://doi.org/10.1117/2.1200906.1560
    27 https://doi.org/10.1162/neco.2009.10-08-892
    28 https://doi.org/10.1214/12-aos1063
    29 https://doi.org/10.1366/0003702981944571
    30 https://doi.org/10.5772/22689
    31 https://doi.org/10.5772/52655
    32 schema:datePublished 2016-03
    33 schema:datePublishedReg 2016-03-01
    34 schema:description Gastric cancer is one of the fifth most deadly cancers worldwide. Nowadays the diagnosis is performed through gastroendoscopy under white light and histological analysis. However, the precancerous lesions are multifocalized and present low differences with respect to healthy tissue. Several systems have been proposed based on light tissue interaction to improve the visualization of malignancies. However, these systems are limited to few wavelengths. In this paper, we propose a minimally invasive technique based on multispectral imaging and a methodology to identify malignancies in the stomach. We developed a multispectral gastroendoscopic system compatible with current gastroendoscopes, where only the illumination is changed. The spectra are extracted from the acquired multispectral images in order to compute statistical features that are used to classify the data in two classes: healthy and malignant. The features are ranked by pooled variance t test to train three classifiers. Neural networks using generalized relevance learning vector quantization, support vector machine (SVM) with a Gaussian kernel and k-nn are evaluated using leave one patient out cross-validation. Taking into consideration the data collected in this work, the quantitative results from the classification using SVM show high accuracy and sensitivity using a low number of features. These results show the ability to discriminate malignancies of the gastric tissue. Therefore, multispectral imaging could help in the identification of malignancies during gastroendoscopy.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N7392f8ec1fe94900b3f0f00f4fd48e55
    39 N9cfab19a9261488d8ea828e440563e36
    40 sg:journal.1050964
    41 schema:name Identification of precancerous lesions by multispectral gastroendoscopy
    42 schema:pagination 455-462
    43 schema:productId N553b2e455b4a4272a59e57ac35442cc9
    44 N73fb0004622e417ca45a7ce6bf120f12
    45 Ne8f6a38adcfc4fa18576ba42931e8a3b
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001026587
    47 https://doi.org/10.1007/s11760-015-0779-z
    48 schema:sdDatePublished 2019-04-11T02:06
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N9fe0cfe0566f4ea7b79c646a3840793b
    51 schema:url http://link.springer.com/10.1007%2Fs11760-015-0779-z
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N05e5f25c19cf402283644ce4cb509c6e rdf:first sg:person.0610133233.71
    56 rdf:rest N2ff76e4567584424a7832d5e53bbe694
    57 N2079f1cb5f1b4edab06d83fec9306cbf rdf:first sg:person.01155755143.41
    58 rdf:rest N05e5f25c19cf402283644ce4cb509c6e
    59 N2ff76e4567584424a7832d5e53bbe694 rdf:first sg:person.07657000121.61
    60 rdf:rest N790ccf728111442caf536d0d469ec4a6
    61 N4522239fcb314621a955b10fd1f79cfc rdf:first sg:person.013554503013.55
    62 rdf:rest Nfc80fcaf4db44702933e2a46e1c94524
    63 N553b2e455b4a4272a59e57ac35442cc9 schema:name doi
    64 schema:value 10.1007/s11760-015-0779-z
    65 rdf:type schema:PropertyValue
    66 N5fbda8ccc1fd49ef87cdec95b2fc80dc rdf:first sg:person.0662564376.25
    67 rdf:rest rdf:nil
    68 N7392f8ec1fe94900b3f0f00f4fd48e55 schema:issueNumber 3
    69 rdf:type schema:PublicationIssue
    70 N73fb0004622e417ca45a7ce6bf120f12 schema:name readcube_id
    71 schema:value 04e44a3860cbb444232379f0026fa0ee9180f88763b2760dba73ca8912fb7501
    72 rdf:type schema:PropertyValue
    73 N790ccf728111442caf536d0d469ec4a6 rdf:first sg:person.01060752353.05
    74 rdf:rest N5fbda8ccc1fd49ef87cdec95b2fc80dc
    75 N9cfab19a9261488d8ea828e440563e36 schema:volumeNumber 10
    76 rdf:type schema:PublicationVolume
    77 N9fe0cfe0566f4ea7b79c646a3840793b schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 Ne8f6a38adcfc4fa18576ba42931e8a3b schema:name dimensions_id
    80 schema:value pub.1001026587
    81 rdf:type schema:PropertyValue
    82 Nfc80fcaf4db44702933e2a46e1c94524 rdf:first sg:person.016115557367.36
    83 rdf:rest N2079f1cb5f1b4edab06d83fec9306cbf
    84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Information and Computing Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Artificial Intelligence and Image Processing
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1050964 schema:issn 1863-1703
    91 1863-1711
    92 schema:name Signal, Image and Video Processing
    93 rdf:type schema:Periodical
    94 sg:person.01060752353.05 schema:affiliation https://www.grid.ac/institutes/grid.12832.3a
    95 schema:familyName Lamarque
    96 schema:givenName Dominique
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060752353.05
    98 rdf:type schema:Person
    99 sg:person.01155755143.41 schema:affiliation https://www.grid.ac/institutes/grid.425181.b
    100 schema:familyName Boffety
    101 schema:givenName Matthieu
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155755143.41
    103 rdf:type schema:Person
    104 sg:person.013554503013.55 schema:affiliation https://www.grid.ac/institutes/grid.12832.3a
    105 schema:familyName Martinez-Herrera
    106 schema:givenName Sergio E.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554503013.55
    108 rdf:type schema:Person
    109 sg:person.016115557367.36 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
    110 schema:familyName Benezeth
    111 schema:givenName Yannick
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016115557367.36
    113 rdf:type schema:Person
    114 sg:person.0610133233.71 schema:affiliation https://www.grid.ac/institutes/grid.12832.3a
    115 schema:familyName Emile
    116 schema:givenName Jean-François
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610133233.71
    118 rdf:type schema:Person
    119 sg:person.0662564376.25 schema:affiliation https://www.grid.ac/institutes/grid.425181.b
    120 schema:familyName Goudail
    121 schema:givenName François
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662564376.25
    123 rdf:type schema:Person
    124 sg:person.07657000121.61 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
    125 schema:familyName Marzani
    126 schema:givenName Franck
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657000121.61
    128 rdf:type schema:Person
    129 sg:pub.10.1007/3-540-45014-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000204280
    130 https://doi.org/10.1007/3-540-45014-9_1
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/3-540-55426-2_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036175401
    133 https://doi.org/10.1007/3-540-55426-2_27
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s10439-006-9121-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036757176
    136 https://doi.org/10.1007/s10439-006-9121-9
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1002/9781444397772.ch14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023678172
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/b978-0-12-336156-1.50061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003803373
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.compmedimag.2010.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024693071
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.gie.2008.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039788884
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.neunet.2013.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018609401
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.patcog.2013.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018031667
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.patrec.2012.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015412183
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/s0893-6080(02)00079-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022193802
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1055/s-2003-40228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057422651
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1088/0031-9155/50/8/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025965
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1093/bioinformatics/16.10.906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029326163
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/34.574797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156543
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/cbms.2013.6627778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094204223
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/sitis.2012.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094038965
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/tgrs.2008.2011280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610700
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1111/j.1751-2980.2011.00550.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018505625
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1117/1.1766301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037195886
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1117/1.jbo.18.2.026010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001562796
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1117/12.816917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037475916
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1117/2.1200906.1560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051253574
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1162/neco.2009.10-08-892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009343907
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1214/12-aos1063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393182
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1366/0003702981944571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065265187
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.5772/22689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150746
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.5772/52655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004418224
    187 rdf:type schema:CreativeWork
    188 https://www.grid.ac/institutes/grid.12832.3a schema:alternateName Versailles Saint-Quentin-en-Yvelines University
    189 schema:name Institut d’Optique Graduate School, 2 av. Augustin Fresnel, 91127, Palaiseau, France
    190 Service de Gastroendoscopy, Hôpital Ambroise Paré, 9 av. Charles de Gaulle, 92104, Boulogne-Billancourt, France
    191 Service d’anatomie et pathologie, Hôpital Ambroise Paré, 9 av. Charles de Gaulle, 92104, Boulogne-Billancourt, France
    192 Université de Versailles-Saint-Quentin-en-Yvelines, 55 Avenue de Paris, 78000, Versailles, France
    193 rdf:type schema:Organization
    194 https://www.grid.ac/institutes/grid.425181.b schema:alternateName Institut d’Optique Graduate School
    195 schema:name Institut d’Optique Graduate School, 2 av. Augustin Fresnel, 91127, Palaiseau, France
    196 rdf:type schema:Organization
    197 https://www.grid.ac/institutes/grid.5613.1 schema:alternateName University of Burgundy
    198 schema:name Le2i - UMR CNRS 6306, Université de Bourgogne, 9 av. Alain Savary, 21078, Dijon, France
    199 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...