A novel template protection scheme for multibiometrics based on fuzzy commitment and chaotic system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-07-18

AUTHORS

Ning Wang, Qiong Li, Ahmed A. Abd El-Latif, Jialiang Peng, Xuehu Yan, Xiamu Niu

ABSTRACT

In recent years, biometrics template protection has been extensively studied and lots of schemes have been proposed. However, most of them have not considered the forgery, large difference of intra-class and the security of unimodal biometrics leakage. And there is no multibiometrics template scheme based on the fusion of dual iris, thermal and visible face images. In this paper, a novel multibiometrics template protection scheme based on fuzzy commitment and chaotic system, and the security analysis approach for unimodal biometrics leakage are proposed. Firstly, the thermal face images are captured to overcome the forgery. Then, the fuzzy commitment is generated from the corporation of error correcting code (ECC) and the fusion binary features. Additionally, the dual iris feature vectors are encrypted via the chaotic system, and the score level fusion based on Aczél-Alsina triangular-norm (AA T-norm) is implemented to acquire the final verification performance. Finally, the entropy of both mutlibiometrics and unimodal information leakage is analyzed to show the security of the proposed approach. The experimental tests are conducted on a virtual multibiometrics database, which merges the challenging CASIA-Iris-Thousand and the NVIE face database. The verification performance decreases from EER of 3×10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \times 10^{-2}$$\end{document} to 1.163×10-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.163 \times 10^{-1}$$\end{document} %, but the multibiometrics template security is enhanced from 80.53 to 167.80 bits based on BCH ECC (1,023, 123, 170). More... »

PAGES

99-109

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11760-014-0663-2

DOI

http://dx.doi.org/10.1007/s11760-014-0663-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025062643


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China", 
          "id": "http://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ning", 
        "id": "sg:person.016240536143.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240536143.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Science Zone of Harbin Institute of Technology, Room 1523, Building 2A, No.2 Yikuang Street, Nangang District, Harbin, China", 
          "id": "http://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China", 
            "Science Zone of Harbin Institute of Technology, Room 1523, Building 2A, No.2 Yikuang Street, Nangang District, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Qiong", 
        "id": "sg:person.016400453677.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016400453677.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematics Department, Faculty of Science, Menoufia University, Shebin El-Koom, 32511, Menufia, Egypt", 
          "id": "http://www.grid.ac/institutes/grid.411775.1", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China", 
            "Mathematics Department, Faculty of Science, Menoufia University, Shebin El-Koom, 32511, Menufia, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abd El-Latif", 
        "givenName": "Ahmed A.", 
        "id": "sg:person.015627443237.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015627443237.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Information and Network Administration Center, Heilongjiang University, 150080, Harbin, China", 
          "id": "http://www.grid.ac/institutes/grid.412067.6", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China", 
            "Information and Network Administration Center, Heilongjiang University, 150080, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Jialiang", 
        "id": "sg:person.012544213631.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012544213631.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China", 
          "id": "http://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China", 
          "id": "http://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niu", 
        "givenName": "Xiamu", 
        "id": "sg:person.011071034626.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011071034626.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10623-005-6343-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033876746", 
          "https://doi.org/10.1007/s10623-005-6343-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-013-1551-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019489085", 
          "https://doi.org/10.1007/s11042-013-1551-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-012-1278-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019293852", 
          "https://doi.org/10.1007/s11042-012-1278-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11506157_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013837400", 
          "https://doi.org/10.1007/11506157_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2008/657081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063202759", 
          "https://doi.org/10.1155/2008/657081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24591-9_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007336144", 
          "https://doi.org/10.1007/978-3-540-24591-9_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02189626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007801688", 
          "https://doi.org/10.1007/bf02189626"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-07-18", 
    "datePublishedReg": "2014-07-18", 
    "description": "In recent years, biometrics template protection has been extensively studied and lots of schemes have been proposed. However, most of them have not considered the forgery, large difference of intra-class and the security of unimodal biometrics leakage. And there is no multibiometrics template scheme based on the fusion of dual iris, thermal and visible face images. In this paper, a novel multibiometrics template protection scheme based on fuzzy commitment and chaotic system, and the security analysis approach for unimodal biometrics leakage are proposed. Firstly, the thermal face images are captured to overcome the forgery. Then, the fuzzy commitment is generated from the corporation of error correcting code (ECC) and the fusion binary features. Additionally, the dual iris feature vectors are encrypted via the chaotic system, and the score level fusion based on Acz\u00e9l-Alsina triangular-norm (AA T-norm) is implemented to acquire the final verification performance. Finally, the entropy of both mutlibiometrics and unimodal information leakage is analyzed to show the security of the proposed approach. The experimental tests are conducted on a virtual multibiometrics database, which merges the challenging CASIA-Iris-Thousand and the NVIE face database. The verification performance decreases from EER of 3\u00d710-2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$3 \\times 10^{-2}$$\\end{document} to 1.163\u00d710-1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1.163 \\times 10^{-1}$$\\end{document}\u00a0%, but the multibiometrics template security is enhanced from 80.53 to 167.80 bits based on BCH ECC (1,023, 123, 170).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11760-014-0663-2", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6998614", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050964", 
        "issn": [
          "1863-1703", 
          "1863-1711"
        ], 
        "name": "Signal, Image and Video Processing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "error correcting codes", 
      "fuzzy commitment", 
      "verification performance", 
      "face images", 
      "security analysis approach", 
      "template protection scheme", 
      "score level fusion", 
      "iris feature vector", 
      "thermal face images", 
      "protection scheme", 
      "visible face images", 
      "CASIA-Iris", 
      "information leakage", 
      "level fusion", 
      "correcting codes", 
      "feature vectors", 
      "template scheme", 
      "face databases", 
      "multibiometrics", 
      "chaotic systems", 
      "security", 
      "forgery", 
      "scheme", 
      "images", 
      "biometrics", 
      "analysis approach", 
      "database", 
      "recent years", 
      "EER", 
      "system", 
      "fusion", 
      "performance", 
      "bits", 
      "code", 
      "iris", 
      "thousands", 
      "vector", 
      "experimental tests", 
      "leakage", 
      "entropy", 
      "corporations", 
      "binaries", 
      "protection", 
      "commitment", 
      "years", 
      "test", 
      "large differences", 
      "differences", 
      "approach", 
      "paper"
    ], 
    "name": "A novel template protection scheme for multibiometrics based on fuzzy commitment and chaotic system", 
    "pagination": "99-109", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025062643"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11760-014-0663-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11760-014-0663-2", 
      "https://app.dimensions.ai/details/publication/pub.1025062643"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_644.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11760-014-0663-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-014-0663-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-014-0663-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-014-0663-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-014-0663-2'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      81 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11760-014-0663-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N00d574fc239144af81fd57a32ee0b0a2
4 schema:citation sg:pub.10.1007/11506157_21
5 sg:pub.10.1007/978-3-540-24591-9_27
6 sg:pub.10.1007/bf02189626
7 sg:pub.10.1007/s10623-005-6343-z
8 sg:pub.10.1007/s11042-012-1278-7
9 sg:pub.10.1007/s11042-013-1551-4
10 sg:pub.10.1155/2008/657081
11 schema:datePublished 2014-07-18
12 schema:datePublishedReg 2014-07-18
13 schema:description In recent years, biometrics template protection has been extensively studied and lots of schemes have been proposed. However, most of them have not considered the forgery, large difference of intra-class and the security of unimodal biometrics leakage. And there is no multibiometrics template scheme based on the fusion of dual iris, thermal and visible face images. In this paper, a novel multibiometrics template protection scheme based on fuzzy commitment and chaotic system, and the security analysis approach for unimodal biometrics leakage are proposed. Firstly, the thermal face images are captured to overcome the forgery. Then, the fuzzy commitment is generated from the corporation of error correcting code (ECC) and the fusion binary features. Additionally, the dual iris feature vectors are encrypted via the chaotic system, and the score level fusion based on Aczél-Alsina triangular-norm (AA T-norm) is implemented to acquire the final verification performance. Finally, the entropy of both mutlibiometrics and unimodal information leakage is analyzed to show the security of the proposed approach. The experimental tests are conducted on a virtual multibiometrics database, which merges the challenging CASIA-Iris-Thousand and the NVIE face database. The verification performance decreases from EER of 3×10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \times 10^{-2}$$\end{document} to 1.163×10-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.163 \times 10^{-1}$$\end{document} %, but the multibiometrics template security is enhanced from 80.53 to 167.80 bits based on BCH ECC (1,023, 123, 170).
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N1c7b8de62ac746419e81dcec3584b9ef
17 N5d1377fc977e45f89b0869571d73443f
18 sg:journal.1050964
19 schema:keywords CASIA-Iris
20 EER
21 analysis approach
22 approach
23 binaries
24 biometrics
25 bits
26 chaotic systems
27 code
28 commitment
29 corporations
30 correcting codes
31 database
32 differences
33 entropy
34 error correcting codes
35 experimental tests
36 face databases
37 face images
38 feature vectors
39 forgery
40 fusion
41 fuzzy commitment
42 images
43 information leakage
44 iris
45 iris feature vector
46 large differences
47 leakage
48 level fusion
49 multibiometrics
50 paper
51 performance
52 protection
53 protection scheme
54 recent years
55 scheme
56 score level fusion
57 security
58 security analysis approach
59 system
60 template protection scheme
61 template scheme
62 test
63 thermal face images
64 thousands
65 vector
66 verification performance
67 visible face images
68 years
69 schema:name A novel template protection scheme for multibiometrics based on fuzzy commitment and chaotic system
70 schema:pagination 99-109
71 schema:productId N213e0d83fabf4c3dbb8092e34a957909
72 N6c01cba34cd3407fb5ade249e39b8534
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025062643
74 https://doi.org/10.1007/s11760-014-0663-2
75 schema:sdDatePublished 2022-12-01T06:32
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N26c7cb32d45547cca20215e733488de2
78 schema:url https://doi.org/10.1007/s11760-014-0663-2
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N00d574fc239144af81fd57a32ee0b0a2 rdf:first sg:person.016240536143.49
83 rdf:rest Na85ed9519419459fac6182ab5b1be7e2
84 N1c7b8de62ac746419e81dcec3584b9ef schema:issueNumber Suppl 1
85 rdf:type schema:PublicationIssue
86 N213e0d83fabf4c3dbb8092e34a957909 schema:name dimensions_id
87 schema:value pub.1025062643
88 rdf:type schema:PropertyValue
89 N26c7cb32d45547cca20215e733488de2 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N5d1377fc977e45f89b0869571d73443f schema:volumeNumber 9
92 rdf:type schema:PublicationVolume
93 N6b7d3e4149254125829d76e7674a7a20 rdf:first sg:person.011071034626.54
94 rdf:rest rdf:nil
95 N6c01cba34cd3407fb5ade249e39b8534 schema:name doi
96 schema:value 10.1007/s11760-014-0663-2
97 rdf:type schema:PropertyValue
98 N7836709abd7c4174a3a00c9398a9d0d6 rdf:first sg:person.010467364517.31
99 rdf:rest N6b7d3e4149254125829d76e7674a7a20
100 Na85ed9519419459fac6182ab5b1be7e2 rdf:first sg:person.016400453677.62
101 rdf:rest Ne8d99c5765854469a3cd6aca8868a467
102 Nbde48804a16341cd9e40bd5fca5e725d rdf:first sg:person.012544213631.20
103 rdf:rest N7836709abd7c4174a3a00c9398a9d0d6
104 Ne8d99c5765854469a3cd6aca8868a467 rdf:first sg:person.015627443237.64
105 rdf:rest Nbde48804a16341cd9e40bd5fca5e725d
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:grant.6998614 http://pending.schema.org/fundedItem sg:pub.10.1007/s11760-014-0663-2
113 rdf:type schema:MonetaryGrant
114 sg:journal.1050964 schema:issn 1863-1703
115 1863-1711
116 schema:name Signal, Image and Video Processing
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.010467364517.31 schema:affiliation grid-institutes:grid.19373.3f
120 schema:familyName Yan
121 schema:givenName Xuehu
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
123 rdf:type schema:Person
124 sg:person.011071034626.54 schema:affiliation grid-institutes:grid.19373.3f
125 schema:familyName Niu
126 schema:givenName Xiamu
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011071034626.54
128 rdf:type schema:Person
129 sg:person.012544213631.20 schema:affiliation grid-institutes:grid.412067.6
130 schema:familyName Peng
131 schema:givenName Jialiang
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012544213631.20
133 rdf:type schema:Person
134 sg:person.015627443237.64 schema:affiliation grid-institutes:grid.411775.1
135 schema:familyName Abd El-Latif
136 schema:givenName Ahmed A.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015627443237.64
138 rdf:type schema:Person
139 sg:person.016240536143.49 schema:affiliation grid-institutes:grid.19373.3f
140 schema:familyName Wang
141 schema:givenName Ning
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240536143.49
143 rdf:type schema:Person
144 sg:person.016400453677.62 schema:affiliation grid-institutes:grid.19373.3f
145 schema:familyName Li
146 schema:givenName Qiong
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016400453677.62
148 rdf:type schema:Person
149 sg:pub.10.1007/11506157_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013837400
150 https://doi.org/10.1007/11506157_21
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-3-540-24591-9_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007336144
153 https://doi.org/10.1007/978-3-540-24591-9_27
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/bf02189626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007801688
156 https://doi.org/10.1007/bf02189626
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s10623-005-6343-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033876746
159 https://doi.org/10.1007/s10623-005-6343-z
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11042-012-1278-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019293852
162 https://doi.org/10.1007/s11042-012-1278-7
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11042-013-1551-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019489085
165 https://doi.org/10.1007/s11042-013-1551-4
166 rdf:type schema:CreativeWork
167 sg:pub.10.1155/2008/657081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063202759
168 https://doi.org/10.1155/2008/657081
169 rdf:type schema:CreativeWork
170 grid-institutes:grid.19373.3f schema:alternateName School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
171 Science Zone of Harbin Institute of Technology, Room 1523, Building 2A, No.2 Yikuang Street, Nangang District, Harbin, China
172 schema:name School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
173 Science Zone of Harbin Institute of Technology, Room 1523, Building 2A, No.2 Yikuang Street, Nangang District, Harbin, China
174 rdf:type schema:Organization
175 grid-institutes:grid.411775.1 schema:alternateName Mathematics Department, Faculty of Science, Menoufia University, Shebin El-Koom, 32511, Menufia, Egypt
176 schema:name Mathematics Department, Faculty of Science, Menoufia University, Shebin El-Koom, 32511, Menufia, Egypt
177 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
178 rdf:type schema:Organization
179 grid-institutes:grid.412067.6 schema:alternateName Information and Network Administration Center, Heilongjiang University, 150080, Harbin, China
180 schema:name Information and Network Administration Center, Heilongjiang University, 150080, Harbin, China
181 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...