Photo-mosaicing of images of pipe inner surface View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09

AUTHORS

Yuri Rzhanov

ABSTRACT

This paper describes the algorithm for the construction of continuous visually consistent images of the inner surface of a pipe from a sequence of images acquired by a wide-angle camera that traveled inside the pipe. The algorithm is designed to be a proof of concept and performs well on simulated data (rendered images) even when camera poses (attitude and location) have errors as much as 5%. Photo-mosaics are suitable for traditional (visual) inspection or automatic processing for the detection of manufacturing faults, corroded areas, and cracks. It is demonstrated that the quality of the resulting mosaic depends how the camera is oriented with respect to the pipe axis and that the traditional orientation with an almost collinear camera optical axis and the pipe axis is not the optimal choice. The proposed system is useful for inspection of pipelines that cannot accommodate traditional devices (e.g., pipeline inspection gauges or crawlers), for example, small-scale boilers and gas systems. More... »

PAGES

865-871

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11760-011-0275-z

DOI

http://dx.doi.org/10.1007/s11760-011-0275-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041688758


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Center for Coastal and Ocean Mapping, University of New Hampshire, 24 Colovos Road, 30824, Durham, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rzhanov", 
        "givenName": "Yuri", 
        "id": "sg:person.01331401130.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331401130.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1007927408552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004800989", 
          "https://doi.org/10.1023/a:1007927408552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1186562.1015718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020873224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.186573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024303540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2007.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040969278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052687286", 
          "https://doi.org/10.1023/b:visi.0000029664.99615.94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742999"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "This paper describes the algorithm for the construction of continuous visually consistent images of the inner surface of a pipe from a sequence of images acquired by a wide-angle camera that traveled inside the pipe. The algorithm is designed to be a proof of concept and performs well on simulated data (rendered images) even when camera poses (attitude and location) have errors as much as 5%. Photo-mosaics are suitable for traditional (visual) inspection or automatic processing for the detection of manufacturing faults, corroded areas, and cracks. It is demonstrated that the quality of the resulting mosaic depends how the camera is oriented with respect to the pipe axis and that the traditional orientation with an almost collinear camera optical axis and the pipe axis is not the optimal choice. The proposed system is useful for inspection of pipelines that cannot accommodate traditional devices (e.g., pipeline inspection gauges or crawlers), for example, small-scale boilers and gas systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11760-011-0275-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050964", 
        "issn": [
          "1863-1703", 
          "1863-1711"
        ], 
        "name": "Signal, Image and Video Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Photo-mosaicing of images of pipe inner surface", 
    "pagination": "865-871", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6968c764022068a9cd56928e6a52d4bdbc619c3eba012a2cdded4e0ec5803ea"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11760-011-0275-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041688758"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11760-011-0275-z", 
      "https://app.dimensions.ai/details/publication/pub.1041688758"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11760-011-0275-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0275-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0275-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0275-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0275-z'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11760-011-0275-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N412dea6b48e640e283151da445b4a4b2
4 schema:citation sg:pub.10.1023/a:1007927408552
5 sg:pub.10.1023/b:visi.0000029664.99615.94
6 https://doi.org/10.1016/j.cviu.2007.09.014
7 https://doi.org/10.1109/tpami.2006.153
8 https://doi.org/10.1117/12.186573
9 https://doi.org/10.1145/1186562.1015718
10 schema:datePublished 2013-09
11 schema:datePublishedReg 2013-09-01
12 schema:description This paper describes the algorithm for the construction of continuous visually consistent images of the inner surface of a pipe from a sequence of images acquired by a wide-angle camera that traveled inside the pipe. The algorithm is designed to be a proof of concept and performs well on simulated data (rendered images) even when camera poses (attitude and location) have errors as much as 5%. Photo-mosaics are suitable for traditional (visual) inspection or automatic processing for the detection of manufacturing faults, corroded areas, and cracks. It is demonstrated that the quality of the resulting mosaic depends how the camera is oriented with respect to the pipe axis and that the traditional orientation with an almost collinear camera optical axis and the pipe axis is not the optimal choice. The proposed system is useful for inspection of pipelines that cannot accommodate traditional devices (e.g., pipeline inspection gauges or crawlers), for example, small-scale boilers and gas systems.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N576bf151bb2e486986911b462903629b
17 N8f232827a2274fa8add43823569e4205
18 sg:journal.1050964
19 schema:name Photo-mosaicing of images of pipe inner surface
20 schema:pagination 865-871
21 schema:productId N2233984254cd47dbb59f033f5b238c52
22 N33df375e54de41a6bb00e61c626006bc
23 N9b5d9959e4774493aec7b92c2451f082
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041688758
25 https://doi.org/10.1007/s11760-011-0275-z
26 schema:sdDatePublished 2019-04-10T15:04
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N16d4067305a14cf08980981917e7a4b7
29 schema:url http://link.springer.com/10.1007%2Fs11760-011-0275-z
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N16d4067305a14cf08980981917e7a4b7 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N2233984254cd47dbb59f033f5b238c52 schema:name readcube_id
36 schema:value c6968c764022068a9cd56928e6a52d4bdbc619c3eba012a2cdded4e0ec5803ea
37 rdf:type schema:PropertyValue
38 N33df375e54de41a6bb00e61c626006bc schema:name doi
39 schema:value 10.1007/s11760-011-0275-z
40 rdf:type schema:PropertyValue
41 N412dea6b48e640e283151da445b4a4b2 rdf:first sg:person.01331401130.04
42 rdf:rest rdf:nil
43 N576bf151bb2e486986911b462903629b schema:volumeNumber 7
44 rdf:type schema:PublicationVolume
45 N5e450ff70bd54b12bdde05fcea8957c1 schema:name Center for Coastal and Ocean Mapping, University of New Hampshire, 24 Colovos Road, 30824, Durham, NH, USA
46 rdf:type schema:Organization
47 N8f232827a2274fa8add43823569e4205 schema:issueNumber 5
48 rdf:type schema:PublicationIssue
49 N9b5d9959e4774493aec7b92c2451f082 schema:name dimensions_id
50 schema:value pub.1041688758
51 rdf:type schema:PropertyValue
52 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
53 schema:name Information and Computing Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
56 schema:name Artificial Intelligence and Image Processing
57 rdf:type schema:DefinedTerm
58 sg:journal.1050964 schema:issn 1863-1703
59 1863-1711
60 schema:name Signal, Image and Video Processing
61 rdf:type schema:Periodical
62 sg:person.01331401130.04 schema:affiliation N5e450ff70bd54b12bdde05fcea8957c1
63 schema:familyName Rzhanov
64 schema:givenName Yuri
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331401130.04
66 rdf:type schema:Person
67 sg:pub.10.1023/a:1007927408552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004800989
68 https://doi.org/10.1023/a:1007927408552
69 rdf:type schema:CreativeWork
70 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
71 https://doi.org/10.1023/b:visi.0000029664.99615.94
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/j.cviu.2007.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040969278
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1109/tpami.2006.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742999
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1117/12.186573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024303540
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1145/1186562.1015718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020873224
80 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...