Photo-mosaicing of images of pipe inner surface View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09

AUTHORS

Yuri Rzhanov

ABSTRACT

This paper describes the algorithm for the construction of continuous visually consistent images of the inner surface of a pipe from a sequence of images acquired by a wide-angle camera that traveled inside the pipe. The algorithm is designed to be a proof of concept and performs well on simulated data (rendered images) even when camera poses (attitude and location) have errors as much as 5%. Photo-mosaics are suitable for traditional (visual) inspection or automatic processing for the detection of manufacturing faults, corroded areas, and cracks. It is demonstrated that the quality of the resulting mosaic depends how the camera is oriented with respect to the pipe axis and that the traditional orientation with an almost collinear camera optical axis and the pipe axis is not the optimal choice. The proposed system is useful for inspection of pipelines that cannot accommodate traditional devices (e.g., pipeline inspection gauges or crawlers), for example, small-scale boilers and gas systems. More... »

PAGES

865-871

References to SciGraph publications

  • 2004-11. Distinctive Image Features from Scale-Invariant Keypoints in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1997-09. The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11760-011-0275-z

    DOI

    http://dx.doi.org/10.1007/s11760-011-0275-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041688758


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Center for Coastal and Ocean Mapping, University of New Hampshire, 24 Colovos Road, 30824, Durham, NH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rzhanov", 
            "givenName": "Yuri", 
            "id": "sg:person.01331401130.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331401130.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1007927408552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004800989", 
              "https://doi.org/10.1023/a:1007927408552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1186562.1015718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020873224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.186573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024303540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cviu.2007.09.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040969278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052687286", 
              "https://doi.org/10.1023/b:visi.0000029664.99615.94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2006.153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742999"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-09", 
        "datePublishedReg": "2013-09-01", 
        "description": "This paper describes the algorithm for the construction of continuous visually consistent images of the inner surface of a pipe from a sequence of images acquired by a wide-angle camera that traveled inside the pipe. The algorithm is designed to be a proof of concept and performs well on simulated data (rendered images) even when camera poses (attitude and location) have errors as much as 5%. Photo-mosaics are suitable for traditional (visual) inspection or automatic processing for the detection of manufacturing faults, corroded areas, and cracks. It is demonstrated that the quality of the resulting mosaic depends how the camera is oriented with respect to the pipe axis and that the traditional orientation with an almost collinear camera optical axis and the pipe axis is not the optimal choice. The proposed system is useful for inspection of pipelines that cannot accommodate traditional devices (e.g., pipeline inspection gauges or crawlers), for example, small-scale boilers and gas systems.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11760-011-0275-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050964", 
            "issn": [
              "1863-1703", 
              "1863-1711"
            ], 
            "name": "Signal, Image and Video Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Photo-mosaicing of images of pipe inner surface", 
        "pagination": "865-871", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c6968c764022068a9cd56928e6a52d4bdbc619c3eba012a2cdded4e0ec5803ea"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11760-011-0275-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041688758"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11760-011-0275-z", 
          "https://app.dimensions.ai/details/publication/pub.1041688758"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000523.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11760-011-0275-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0275-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0275-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0275-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0275-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    80 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11760-011-0275-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nd0e2bdff8a084f2ca3995851e3c91cee
    4 schema:citation sg:pub.10.1023/a:1007927408552
    5 sg:pub.10.1023/b:visi.0000029664.99615.94
    6 https://doi.org/10.1016/j.cviu.2007.09.014
    7 https://doi.org/10.1109/tpami.2006.153
    8 https://doi.org/10.1117/12.186573
    9 https://doi.org/10.1145/1186562.1015718
    10 schema:datePublished 2013-09
    11 schema:datePublishedReg 2013-09-01
    12 schema:description This paper describes the algorithm for the construction of continuous visually consistent images of the inner surface of a pipe from a sequence of images acquired by a wide-angle camera that traveled inside the pipe. The algorithm is designed to be a proof of concept and performs well on simulated data (rendered images) even when camera poses (attitude and location) have errors as much as 5%. Photo-mosaics are suitable for traditional (visual) inspection or automatic processing for the detection of manufacturing faults, corroded areas, and cracks. It is demonstrated that the quality of the resulting mosaic depends how the camera is oriented with respect to the pipe axis and that the traditional orientation with an almost collinear camera optical axis and the pipe axis is not the optimal choice. The proposed system is useful for inspection of pipelines that cannot accommodate traditional devices (e.g., pipeline inspection gauges or crawlers), for example, small-scale boilers and gas systems.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N214cb9fa2c854a419dcd8df67baf007d
    17 N372f5e303fe04043978d261dab1b5690
    18 sg:journal.1050964
    19 schema:name Photo-mosaicing of images of pipe inner surface
    20 schema:pagination 865-871
    21 schema:productId N15a3e3934f4046deb1716672a806662c
    22 Na7c846bddfe448c89aedb6ea2c42f16e
    23 Ne94ffaa8c3664d27bc49bebd69626e06
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041688758
    25 https://doi.org/10.1007/s11760-011-0275-z
    26 schema:sdDatePublished 2019-04-10T15:04
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N0092cc81ec714446b0a91fcfff26de79
    29 schema:url http://link.springer.com/10.1007%2Fs11760-011-0275-z
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N0092cc81ec714446b0a91fcfff26de79 schema:name Springer Nature - SN SciGraph project
    34 rdf:type schema:Organization
    35 N15a3e3934f4046deb1716672a806662c schema:name dimensions_id
    36 schema:value pub.1041688758
    37 rdf:type schema:PropertyValue
    38 N214cb9fa2c854a419dcd8df67baf007d schema:issueNumber 5
    39 rdf:type schema:PublicationIssue
    40 N372f5e303fe04043978d261dab1b5690 schema:volumeNumber 7
    41 rdf:type schema:PublicationVolume
    42 N889960c56aa74dac8cd1a1920ac3d441 schema:name Center for Coastal and Ocean Mapping, University of New Hampshire, 24 Colovos Road, 30824, Durham, NH, USA
    43 rdf:type schema:Organization
    44 Na7c846bddfe448c89aedb6ea2c42f16e schema:name readcube_id
    45 schema:value c6968c764022068a9cd56928e6a52d4bdbc619c3eba012a2cdded4e0ec5803ea
    46 rdf:type schema:PropertyValue
    47 Nd0e2bdff8a084f2ca3995851e3c91cee rdf:first sg:person.01331401130.04
    48 rdf:rest rdf:nil
    49 Ne94ffaa8c3664d27bc49bebd69626e06 schema:name doi
    50 schema:value 10.1007/s11760-011-0275-z
    51 rdf:type schema:PropertyValue
    52 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Information and Computing Sciences
    54 rdf:type schema:DefinedTerm
    55 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Artificial Intelligence and Image Processing
    57 rdf:type schema:DefinedTerm
    58 sg:journal.1050964 schema:issn 1863-1703
    59 1863-1711
    60 schema:name Signal, Image and Video Processing
    61 rdf:type schema:Periodical
    62 sg:person.01331401130.04 schema:affiliation N889960c56aa74dac8cd1a1920ac3d441
    63 schema:familyName Rzhanov
    64 schema:givenName Yuri
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331401130.04
    66 rdf:type schema:Person
    67 sg:pub.10.1023/a:1007927408552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004800989
    68 https://doi.org/10.1023/a:1007927408552
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
    71 https://doi.org/10.1023/b:visi.0000029664.99615.94
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1016/j.cviu.2007.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040969278
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1109/tpami.2006.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742999
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1117/12.186573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024303540
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1145/1186562.1015718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020873224
    80 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...