On the use of dynamic features in face biometrics: recent advances and challenges View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-07-29

AUTHORS

Abdenour Hadid, Jean-Luc Dugelay, Matti Pietikäinen

ABSTRACT

The way a person is moving his/her head and facial parts (such as the movements of the mouth when a person is talking) defines so called facial dynamics and characterizes personal behaviors. An emerging direction in automatic face analysis consists of also using such dynamic cues, in addition to facial structure, in order to enhance the performance of static image-based methods. This is inspired by psychophysical and neural studies indicating that behavioral characteristics do also provide valuable information to face analysis in the human visual system. This survey article presents the motivations, reviews the recent developments and discusses several other important issues related to the use of facial dynamics in computer vision. As a case study of using facial dynamics, two LBP-based baseline methods are considered and experimental results in different face-related problems, including face recognition, gender recognition, age estimation and ethnicity classification are reported and discussed. Furthermore, remaining challenges are highlighted and some promising directions are pointed out. More... »

PAGES

495

References to SciGraph publications

  • 2006. Person Recognition Using Human Head Motion Information in ARTICULATED MOTION AND DEFORMABLE OBJECTS
  • 2003-06-24. Audio- and Video-Based Biometric Person Authentication, 4th International Conference, AVBPA 2003 Guildford, UK, June 9–11, 2003 Proceedings in NONE
  • 1995-01. Visual learning and recognition of 3-d objects from appearance in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2003-06-24. The BANCA Database and Evaluation Protocol in AUDIO- AND VIDEO-BASED BIOMETRIC PERSON AUTHENTICATION
  • 2006-06-01. Boosting Sex Identification Performance in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2002-04-29. Probabilistic Human Recognition from Video in COMPUTER VISION — ECCV 2002
  • 1997. The M2VTS multimodal face database (Release 1.00) in AUDIO- AND VIDEO-BASED BIOMETRIC PERSON AUTHENTICATION
  • 2000-07. On sequential Monte Carlo sampling methods for Bayesian filtering in STATISTICS AND COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11760-011-0247-3

    DOI

    http://dx.doi.org/10.1007/s11760-011-0247-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008056293


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Machine Vision Group, University of Oulu, Oulu, Finland", 
              "id": "http://www.grid.ac/institutes/grid.10858.34", 
              "name": [
                "Machine Vision Group, University of Oulu, Oulu, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hadid", 
            "givenName": "Abdenour", 
            "id": "sg:person.015555404142.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015555404142.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "EURECOM, Sophia Antipolis, France", 
              "id": "http://www.grid.ac/institutes/grid.28848.3e", 
              "name": [
                "EURECOM, Sophia Antipolis, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dugelay", 
            "givenName": "Jean-Luc", 
            "id": "sg:person.015053427343.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Machine Vision Group, University of Oulu, Oulu, Finland", 
              "id": "http://www.grid.ac/institutes/grid.10858.34", 
              "name": [
                "Machine Vision Group, University of Oulu, Oulu, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pietik\u00e4inen", 
            "givenName": "Matti", 
            "id": "sg:person.01177356715.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177356715.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-44887-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028319798", 
              "https://doi.org/10.1007/3-540-44887-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44887-x_74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025992214", 
              "https://doi.org/10.1007/3-540-44887-x_74"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0016021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040394366", 
              "https://doi.org/10.1007/bfb0016021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01421486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020275860", 
              "https://doi.org/10.1007/bf01421486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75690-3_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021560495", 
              "https://doi.org/10.1007/978-3-540-75690-3_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-47977-5_45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014224661", 
              "https://doi.org/10.1007/3-540-47977-5_45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008935410038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035894305", 
              "https://doi.org/10.1023/a:1008935410038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11789239_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036177777", 
              "https://doi.org/10.1007/11789239_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-006-8910-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012828699", 
              "https://doi.org/10.1007/s11263-006-8910-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-07-29", 
        "datePublishedReg": "2011-07-29", 
        "description": "The way a person is moving his/her head and facial parts (such as the movements of the mouth when a person is talking) defines so called facial dynamics and characterizes personal behaviors. An emerging direction in automatic face analysis consists of also using such dynamic cues, in addition to facial structure, in order to enhance the performance of static image-based methods. This is inspired by psychophysical and neural studies indicating that behavioral characteristics do also provide valuable information to face analysis in the human visual system. This survey article presents the motivations, reviews the recent developments and discusses several other important issues related to the use of facial dynamics in computer vision. As a case study of using facial dynamics, two LBP-based baseline methods are considered and experimental results in different face-related problems, including face recognition, gender recognition, age estimation and ethnicity classification are reported and discussed. Furthermore, remaining challenges are highlighted and some promising directions are pointed out.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11760-011-0247-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050964", 
            "issn": [
              "1863-1703", 
              "1863-1711"
            ], 
            "name": "Signal, Image and Video Processing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "facial dynamics", 
          "automatic face analysis", 
          "image-based method", 
          "human visual system", 
          "computer vision", 
          "face biometrics", 
          "gender recognition", 
          "baseline methods", 
          "face recognition", 
          "face analysis", 
          "ethnicity classification", 
          "experimental results", 
          "promising direction", 
          "dynamic features", 
          "survey article", 
          "important issue", 
          "visual system", 
          "biometrics", 
          "recognition", 
          "part defines", 
          "age estimation", 
          "case study", 
          "valuable information", 
          "challenges", 
          "dynamic cues", 
          "behavioral characteristics", 
          "vision", 
          "classification", 
          "facial structures", 
          "information", 
          "personal behavior", 
          "recent advances", 
          "recent developments", 
          "performance", 
          "method", 
          "system", 
          "issues", 
          "features", 
          "estimation", 
          "defines", 
          "discusses", 
          "way", 
          "use", 
          "neural studies", 
          "order", 
          "advances", 
          "direction", 
          "motivation", 
          "dynamics", 
          "cues", 
          "analysis", 
          "development", 
          "results", 
          "persons", 
          "article", 
          "behavior", 
          "characteristics", 
          "structure", 
          "addition", 
          "head", 
          "study", 
          "problem", 
          "facial parts (such as the movements of the mouth when a person is talking) defines", 
          "such dynamic cues", 
          "static image-based methods", 
          "LBP-based baseline methods", 
          "different face-related problems", 
          "face-related problems"
        ], 
        "name": "On the use of dynamic features in face biometrics: recent advances and challenges", 
        "pagination": "495", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008056293"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11760-011-0247-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11760-011-0247-3", 
          "https://app.dimensions.ai/details/publication/pub.1008056293"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_541.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11760-011-0247-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0247-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0247-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0247-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11760-011-0247-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      22 PREDICATES      101 URIs      84 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11760-011-0247-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N319671889a64473b8184212e81835537
    4 schema:citation sg:pub.10.1007/11789239_34
    5 sg:pub.10.1007/3-540-44887-x
    6 sg:pub.10.1007/3-540-44887-x_74
    7 sg:pub.10.1007/3-540-47977-5_45
    8 sg:pub.10.1007/978-3-540-75690-3_1
    9 sg:pub.10.1007/bf01421486
    10 sg:pub.10.1007/bfb0016021
    11 sg:pub.10.1007/s11263-006-8910-9
    12 sg:pub.10.1023/a:1008935410038
    13 schema:datePublished 2011-07-29
    14 schema:datePublishedReg 2011-07-29
    15 schema:description The way a person is moving his/her head and facial parts (such as the movements of the mouth when a person is talking) defines so called facial dynamics and characterizes personal behaviors. An emerging direction in automatic face analysis consists of also using such dynamic cues, in addition to facial structure, in order to enhance the performance of static image-based methods. This is inspired by psychophysical and neural studies indicating that behavioral characteristics do also provide valuable information to face analysis in the human visual system. This survey article presents the motivations, reviews the recent developments and discusses several other important issues related to the use of facial dynamics in computer vision. As a case study of using facial dynamics, two LBP-based baseline methods are considered and experimental results in different face-related problems, including face recognition, gender recognition, age estimation and ethnicity classification are reported and discussed. Furthermore, remaining challenges are highlighted and some promising directions are pointed out.
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N32bfaa793a8f41b3924ae09a23c29e07
    20 Ne516cfed0cb84ffcb922e543d9e9d608
    21 sg:journal.1050964
    22 schema:keywords LBP-based baseline methods
    23 addition
    24 advances
    25 age estimation
    26 analysis
    27 article
    28 automatic face analysis
    29 baseline methods
    30 behavior
    31 behavioral characteristics
    32 biometrics
    33 case study
    34 challenges
    35 characteristics
    36 classification
    37 computer vision
    38 cues
    39 defines
    40 development
    41 different face-related problems
    42 direction
    43 discusses
    44 dynamic cues
    45 dynamic features
    46 dynamics
    47 estimation
    48 ethnicity classification
    49 experimental results
    50 face analysis
    51 face biometrics
    52 face recognition
    53 face-related problems
    54 facial dynamics
    55 facial parts (such as the movements of the mouth when a person is talking) defines
    56 facial structures
    57 features
    58 gender recognition
    59 head
    60 human visual system
    61 image-based method
    62 important issue
    63 information
    64 issues
    65 method
    66 motivation
    67 neural studies
    68 order
    69 part defines
    70 performance
    71 personal behavior
    72 persons
    73 problem
    74 promising direction
    75 recent advances
    76 recent developments
    77 recognition
    78 results
    79 static image-based methods
    80 structure
    81 study
    82 such dynamic cues
    83 survey article
    84 system
    85 use
    86 valuable information
    87 vision
    88 visual system
    89 way
    90 schema:name On the use of dynamic features in face biometrics: recent advances and challenges
    91 schema:pagination 495
    92 schema:productId N203779849b354c3da2c465a6ab36e122
    93 Ncf72d6f278284e0693ef1f16689dde3e
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008056293
    95 https://doi.org/10.1007/s11760-011-0247-3
    96 schema:sdDatePublished 2022-01-01T18:24
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher Nc175137d15844dc994fa531d4c231f50
    99 schema:url https://doi.org/10.1007/s11760-011-0247-3
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N203779849b354c3da2c465a6ab36e122 schema:name doi
    104 schema:value 10.1007/s11760-011-0247-3
    105 rdf:type schema:PropertyValue
    106 N319671889a64473b8184212e81835537 rdf:first sg:person.015555404142.00
    107 rdf:rest N7e04d27060ea40379f754a7dd7f009e2
    108 N32bfaa793a8f41b3924ae09a23c29e07 schema:issueNumber 4
    109 rdf:type schema:PublicationIssue
    110 N7e04d27060ea40379f754a7dd7f009e2 rdf:first sg:person.015053427343.37
    111 rdf:rest Nfaf27e4889794de4a00e26a2fdc9733e
    112 Nc175137d15844dc994fa531d4c231f50 schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 Ncf72d6f278284e0693ef1f16689dde3e schema:name dimensions_id
    115 schema:value pub.1008056293
    116 rdf:type schema:PropertyValue
    117 Ne516cfed0cb84ffcb922e543d9e9d608 schema:volumeNumber 5
    118 rdf:type schema:PublicationVolume
    119 Nfaf27e4889794de4a00e26a2fdc9733e rdf:first sg:person.01177356715.40
    120 rdf:rest rdf:nil
    121 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Information and Computing Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Artificial Intelligence and Image Processing
    126 rdf:type schema:DefinedTerm
    127 sg:journal.1050964 schema:issn 1863-1703
    128 1863-1711
    129 schema:name Signal, Image and Video Processing
    130 schema:publisher Springer Nature
    131 rdf:type schema:Periodical
    132 sg:person.01177356715.40 schema:affiliation grid-institutes:grid.10858.34
    133 schema:familyName Pietikäinen
    134 schema:givenName Matti
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177356715.40
    136 rdf:type schema:Person
    137 sg:person.015053427343.37 schema:affiliation grid-institutes:grid.28848.3e
    138 schema:familyName Dugelay
    139 schema:givenName Jean-Luc
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37
    141 rdf:type schema:Person
    142 sg:person.015555404142.00 schema:affiliation grid-institutes:grid.10858.34
    143 schema:familyName Hadid
    144 schema:givenName Abdenour
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015555404142.00
    146 rdf:type schema:Person
    147 sg:pub.10.1007/11789239_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036177777
    148 https://doi.org/10.1007/11789239_34
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/3-540-44887-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028319798
    151 https://doi.org/10.1007/3-540-44887-x
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/3-540-44887-x_74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025992214
    154 https://doi.org/10.1007/3-540-44887-x_74
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/3-540-47977-5_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014224661
    157 https://doi.org/10.1007/3-540-47977-5_45
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/978-3-540-75690-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021560495
    160 https://doi.org/10.1007/978-3-540-75690-3_1
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf01421486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020275860
    163 https://doi.org/10.1007/bf01421486
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bfb0016021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040394366
    166 https://doi.org/10.1007/bfb0016021
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11263-006-8910-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012828699
    169 https://doi.org/10.1007/s11263-006-8910-9
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1023/a:1008935410038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035894305
    172 https://doi.org/10.1023/a:1008935410038
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.10858.34 schema:alternateName Machine Vision Group, University of Oulu, Oulu, Finland
    175 schema:name Machine Vision Group, University of Oulu, Oulu, Finland
    176 rdf:type schema:Organization
    177 grid-institutes:grid.28848.3e schema:alternateName EURECOM, Sophia Antipolis, France
    178 schema:name EURECOM, Sophia Antipolis, France
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...