Effect of institutional case volume on mid-term mortality after coronary artery bypass grafting surgery View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-01-11

AUTHORS

Seohee Lee, Eun Jin Jang, Junwoo Jo, Dongyeon Jang, Bo Rim Kim, Ho Geol Ryu

ABSTRACT

ObjectiveThe impact of center case volume on mid-term postoperative outcome after coronary artery bypass grafting surgery (CABG) is still controversial and requires investigation. The aim of this study was to compare mid-term survival after CABG according to the institutional annual CABG case volume.MethodsAdult patients (≥ 18 years) who underwent CABG from 2009 to 2016 were identified by searching National Health Insurance database of Korea for CABG procedure codes. Hospitals were classified into three groups based on annual case volume; low-volume centers (< 20 cases/year), medium-volume centers (20–50 cases/year), and high-volume centers (> 50 cases/year).ResultsA total of 22,575 CABG were performed in 95 centers during the study period, and 14,697 (65.1%) cases performed at 15 high-volume centers, 5,262 (23.3%) cases at 26 medium-volume centers, and 2,616 (11.6%) cases at 54 low-volume centers. The overall 1-year mortality rate was the lowest in high-volume centers (6.5%), followed by medium-volume centers (10.6%) and low-volume centers (15.2%). Logistic regression identified medium-volume centers (adjusted OR 1.30 [95% CI 1.15–1.49], P < 0.01) and low-volume centers (adjusted OR 1.75 [95% CI 1.51–2.03], P < 0.01) as risk factors for 1-year mortality after CABG compared to high-volume centers. In the Cox proportional hazard model, low- and medium-volume centers were significantly risk factors for poor survival (adjusted HR 1.41 [95% CI 1.31–1.54], P < 0.01 and HR 1.26 [95% CI 1.17–1.35], P < 0.01 for low- and medium-volume centers, respectively).ConclusionsHigher institutional case volume of CABG was associated with lower mid-term mortality. More... »

PAGES

1275-1282

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11748-020-01578-x

DOI

http://dx.doi.org/10.1007/s11748-020-01578-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1134480075

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33428084


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Bypass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hospitals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Seohee", 
        "id": "sg:person.016470372077.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470372077.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Information Statistics, Andong National University, 1375 Gyeongdong-Ro, 36729, Andong, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.252211.7", 
          "name": [
            "Department of Information Statistics, Andong National University, 1375 Gyeongdong-Ro, 36729, Andong, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jang", 
        "givenName": "Eun Jin", 
        "id": "sg:person.0750142431.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750142431.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Kyungpook National University, 80 Daehak-Ro, 41566, Daegu, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.258803.4", 
          "name": [
            "Department of Statistics, Kyungpook National University, 80 Daehak-Ro, 41566, Daegu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jo", 
        "givenName": "Junwoo", 
        "id": "sg:person.011040066163.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040066163.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jang", 
        "givenName": "Dongyeon", 
        "id": "sg:person.013022260536.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013022260536.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Bo Rim", 
        "id": "sg:person.016601346777.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016601346777.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryu", 
        "givenName": "Ho Geol", 
        "id": "sg:person.01051465077.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051465077.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1245/s10434-007-9673-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044623702", 
          "https://doi.org/10.1245/s10434-007-9673-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13019-019-0849-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111593826", 
          "https://doi.org/10.1186/s13019-019-0849-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12871-016-0271-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000571413", 
          "https://doi.org/10.1186/s12871-016-0271-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-01-11", 
    "datePublishedReg": "2021-01-11", 
    "description": "ObjectiveThe impact of center case volume on mid-term postoperative outcome after coronary artery bypass grafting surgery (CABG) is still controversial and requires investigation. The aim of this study was to compare mid-term survival after CABG according to the institutional annual CABG case volume.MethodsAdult patients (\u2265\u200918\u00a0years) who underwent CABG from 2009 to 2016 were identified by searching National Health Insurance database of Korea for CABG procedure codes. Hospitals were classified into three groups based on annual case volume; low-volume centers (<\u200920 cases/year), medium-volume centers (20\u201350 cases/year), and high-volume centers (>\u200950 cases/year).ResultsA total of 22,575 CABG were performed in 95 centers during the study period, and 14,697 (65.1%) cases performed at 15 high-volume centers, 5,262 (23.3%) cases at 26 medium-volume centers, and 2,616 (11.6%) cases at 54 low-volume centers. The overall 1-year mortality rate was the lowest in high-volume centers (6.5%), followed by medium-volume centers (10.6%) and low-volume centers (15.2%). Logistic regression identified medium-volume centers (adjusted OR 1.30 [95% CI 1.15\u20131.49], P\u2009<\u20090.01) and low-volume centers (adjusted OR 1.75 [95% CI 1.51\u20132.03], P\u2009<\u20090.01) as risk factors for 1-year mortality after CABG compared to high-volume centers. In the Cox proportional hazard model, low- and medium-volume centers were significantly risk factors for poor survival (adjusted HR 1.41 [95% CI 1.31\u20131.54], P\u2009<\u20090.01 and HR 1.26 [95% CI 1.17\u20131.35], P\u2009<\u20090.01 for low- and medium-volume centers, respectively).ConclusionsHigher institutional case volume of CABG was associated with lower mid-term mortality.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11748-020-01578-x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297484", 
        "issn": [
          "1863-6705", 
          "1863-6713"
        ], 
        "name": "General Thoracic and Cardiovascular Surgery", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "medium-volume centers", 
      "low-volume centers", 
      "high-volume centers", 
      "mid-term mortality", 
      "coronary artery bypass", 
      "institutional case volume", 
      "case volume", 
      "artery bypass", 
      "risk factors", 
      "mid-term postoperative outcomes", 
      "lower mid-term mortality", 
      "National Health Insurance database", 
      "Cox proportional hazards model", 
      "center case volume", 
      "mid-term survival", 
      "Health Insurance Database", 
      "annual case volume", 
      "proportional hazards model", 
      "postoperative outcomes", 
      "MethodsAdult patients", 
      "insurance database", 
      "ResultsA total", 
      "poor survival", 
      "CABG", 
      "hazards model", 
      "mortality rate", 
      "logistic regression", 
      "study period", 
      "mortality", 
      "surgery", 
      "bypass", 
      "procedure codes", 
      "survival", 
      "patients", 
      "hospital", 
      "center", 
      "cases", 
      "outcomes", 
      "volume", 
      "factors", 
      "total", 
      "group", 
      "regression", 
      "aim", 
      "period", 
      "database", 
      "study", 
      "rate", 
      "effect", 
      "impact", 
      "investigation", 
      "Korea", 
      "model", 
      "code"
    ], 
    "name": "Effect of institutional case volume on mid-term mortality after coronary artery bypass grafting surgery", 
    "pagination": "1275-1282", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1134480075"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11748-020-01578-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33428084"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11748-020-01578-x", 
      "https://app.dimensions.ai/details/publication/pub.1134480075"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_923.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11748-020-01578-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11748-020-01578-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11748-020-01578-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11748-020-01578-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11748-020-01578-x'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      90 URIs      79 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11748-020-01578-x schema:about N4451390cca2e429299638e71dc4113c5
2 N4c65e26dbed442679d333fb4d6de330b
3 N4f1e429deb1a446e81193d49420d9732
4 N55232455c64240288c057a2083b6cdc8
5 N5bcfc9fe804a4be0a6824d5b9216488a
6 N855a5ee7c4ed40b9903f144269fb8857
7 N8e69a5286f47431cb6f1f70a0d770c83
8 Nb684aa2730574f3cb87dfae3086d6b80
9 anzsrc-for:11
10 anzsrc-for:1117
11 schema:author N02b4d6ba067b4f50beff8be4b6991315
12 schema:citation sg:pub.10.1186/s12871-016-0271-5
13 sg:pub.10.1186/s13019-019-0849-3
14 sg:pub.10.1245/s10434-007-9673-4
15 schema:datePublished 2021-01-11
16 schema:datePublishedReg 2021-01-11
17 schema:description ObjectiveThe impact of center case volume on mid-term postoperative outcome after coronary artery bypass grafting surgery (CABG) is still controversial and requires investigation. The aim of this study was to compare mid-term survival after CABG according to the institutional annual CABG case volume.MethodsAdult patients (≥ 18 years) who underwent CABG from 2009 to 2016 were identified by searching National Health Insurance database of Korea for CABG procedure codes. Hospitals were classified into three groups based on annual case volume; low-volume centers (< 20 cases/year), medium-volume centers (20–50 cases/year), and high-volume centers (> 50 cases/year).ResultsA total of 22,575 CABG were performed in 95 centers during the study period, and 14,697 (65.1%) cases performed at 15 high-volume centers, 5,262 (23.3%) cases at 26 medium-volume centers, and 2,616 (11.6%) cases at 54 low-volume centers. The overall 1-year mortality rate was the lowest in high-volume centers (6.5%), followed by medium-volume centers (10.6%) and low-volume centers (15.2%). Logistic regression identified medium-volume centers (adjusted OR 1.30 [95% CI 1.15–1.49], P < 0.01) and low-volume centers (adjusted OR 1.75 [95% CI 1.51–2.03], P < 0.01) as risk factors for 1-year mortality after CABG compared to high-volume centers. In the Cox proportional hazard model, low- and medium-volume centers were significantly risk factors for poor survival (adjusted HR 1.41 [95% CI 1.31–1.54], P < 0.01 and HR 1.26 [95% CI 1.17–1.35], P < 0.01 for low- and medium-volume centers, respectively).ConclusionsHigher institutional case volume of CABG was associated with lower mid-term mortality.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N5b07fb0d8e084c1d8f3ded30adc596d3
21 N7e541abc091b478fbc07a73e89b83488
22 sg:journal.1297484
23 schema:keywords CABG
24 Cox proportional hazards model
25 Health Insurance Database
26 Korea
27 MethodsAdult patients
28 National Health Insurance database
29 ResultsA total
30 aim
31 annual case volume
32 artery bypass
33 bypass
34 case volume
35 cases
36 center
37 center case volume
38 code
39 coronary artery bypass
40 database
41 effect
42 factors
43 group
44 hazards model
45 high-volume centers
46 hospital
47 impact
48 institutional case volume
49 insurance database
50 investigation
51 logistic regression
52 low-volume centers
53 lower mid-term mortality
54 medium-volume centers
55 mid-term mortality
56 mid-term postoperative outcomes
57 mid-term survival
58 model
59 mortality
60 mortality rate
61 outcomes
62 patients
63 period
64 poor survival
65 postoperative outcomes
66 procedure codes
67 proportional hazards model
68 rate
69 regression
70 risk factors
71 study
72 study period
73 surgery
74 survival
75 total
76 volume
77 schema:name Effect of institutional case volume on mid-term mortality after coronary artery bypass grafting surgery
78 schema:pagination 1275-1282
79 schema:productId N51db4292a91c4af9962c8a0f32025951
80 Nc17a32261d1b4b03a181f2e4d17e7e82
81 Nc45f04b7cafb4ce18dcb8a477c14bfcf
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134480075
83 https://doi.org/10.1007/s11748-020-01578-x
84 schema:sdDatePublished 2022-10-01T06:49
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N576844a30dc44381b830b1050ad662f4
87 schema:url https://doi.org/10.1007/s11748-020-01578-x
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N02b4d6ba067b4f50beff8be4b6991315 rdf:first sg:person.016470372077.81
92 rdf:rest Ne60eb88a688843079eda202c19481ec9
93 N4451390cca2e429299638e71dc4113c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Humans
95 rdf:type schema:DefinedTerm
96 N4c65e26dbed442679d333fb4d6de330b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Treatment Outcome
98 rdf:type schema:DefinedTerm
99 N4f1e429deb1a446e81193d49420d9732 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Coronary Artery Bypass
101 rdf:type schema:DefinedTerm
102 N51db4292a91c4af9962c8a0f32025951 schema:name dimensions_id
103 schema:value pub.1134480075
104 rdf:type schema:PropertyValue
105 N55232455c64240288c057a2083b6cdc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Coronary Artery Disease
107 rdf:type schema:DefinedTerm
108 N576844a30dc44381b830b1050ad662f4 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N5b07fb0d8e084c1d8f3ded30adc596d3 schema:volumeNumber 69
111 rdf:type schema:PublicationVolume
112 N5bcfc9fe804a4be0a6824d5b9216488a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Risk Factors
114 rdf:type schema:DefinedTerm
115 N7e541abc091b478fbc07a73e89b83488 schema:issueNumber 9
116 rdf:type schema:PublicationIssue
117 N855a5ee7c4ed40b9903f144269fb8857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Retrospective Studies
119 rdf:type schema:DefinedTerm
120 N8702d35e45954aeca9133ec4c92b08d6 rdf:first sg:person.016601346777.63
121 rdf:rest Nf7352f123d874897bcfdc0cb33980ec3
122 N8d9958ef814a45e6a8b83207370ddf69 rdf:first sg:person.013022260536.03
123 rdf:rest N8702d35e45954aeca9133ec4c92b08d6
124 N8e69a5286f47431cb6f1f70a0d770c83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Proportional Hazards Models
126 rdf:type schema:DefinedTerm
127 Nb684aa2730574f3cb87dfae3086d6b80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Hospitals
129 rdf:type schema:DefinedTerm
130 Nb9bd78db389845d69e01e5923f4f12e2 rdf:first sg:person.011040066163.53
131 rdf:rest N8d9958ef814a45e6a8b83207370ddf69
132 Nc17a32261d1b4b03a181f2e4d17e7e82 schema:name pubmed_id
133 schema:value 33428084
134 rdf:type schema:PropertyValue
135 Nc45f04b7cafb4ce18dcb8a477c14bfcf schema:name doi
136 schema:value 10.1007/s11748-020-01578-x
137 rdf:type schema:PropertyValue
138 Ne60eb88a688843079eda202c19481ec9 rdf:first sg:person.0750142431.78
139 rdf:rest Nb9bd78db389845d69e01e5923f4f12e2
140 Nf7352f123d874897bcfdc0cb33980ec3 rdf:first sg:person.01051465077.53
141 rdf:rest rdf:nil
142 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
143 schema:name Medical and Health Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
146 schema:name Public Health and Health Services
147 rdf:type schema:DefinedTerm
148 sg:journal.1297484 schema:issn 1863-6705
149 1863-6713
150 schema:name General Thoracic and Cardiovascular Surgery
151 schema:publisher Springer Nature
152 rdf:type schema:Periodical
153 sg:person.01051465077.53 schema:affiliation grid-institutes:grid.412484.f
154 schema:familyName Ryu
155 schema:givenName Ho Geol
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051465077.53
157 rdf:type schema:Person
158 sg:person.011040066163.53 schema:affiliation grid-institutes:grid.258803.4
159 schema:familyName Jo
160 schema:givenName Junwoo
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040066163.53
162 rdf:type schema:Person
163 sg:person.013022260536.03 schema:affiliation grid-institutes:grid.412484.f
164 schema:familyName Jang
165 schema:givenName Dongyeon
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013022260536.03
167 rdf:type schema:Person
168 sg:person.016470372077.81 schema:affiliation grid-institutes:grid.412484.f
169 schema:familyName Lee
170 schema:givenName Seohee
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470372077.81
172 rdf:type schema:Person
173 sg:person.016601346777.63 schema:affiliation grid-institutes:grid.412484.f
174 schema:familyName Kim
175 schema:givenName Bo Rim
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016601346777.63
177 rdf:type schema:Person
178 sg:person.0750142431.78 schema:affiliation grid-institutes:grid.252211.7
179 schema:familyName Jang
180 schema:givenName Eun Jin
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750142431.78
182 rdf:type schema:Person
183 sg:pub.10.1186/s12871-016-0271-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000571413
184 https://doi.org/10.1186/s12871-016-0271-5
185 rdf:type schema:CreativeWork
186 sg:pub.10.1186/s13019-019-0849-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111593826
187 https://doi.org/10.1186/s13019-019-0849-3
188 rdf:type schema:CreativeWork
189 sg:pub.10.1245/s10434-007-9673-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044623702
190 https://doi.org/10.1245/s10434-007-9673-4
191 rdf:type schema:CreativeWork
192 grid-institutes:grid.252211.7 schema:alternateName Department of Information Statistics, Andong National University, 1375 Gyeongdong-Ro, 36729, Andong, Republic of Korea
193 schema:name Department of Information Statistics, Andong National University, 1375 Gyeongdong-Ro, 36729, Andong, Republic of Korea
194 rdf:type schema:Organization
195 grid-institutes:grid.258803.4 schema:alternateName Department of Statistics, Kyungpook National University, 80 Daehak-Ro, 41566, Daegu, Republic of Korea
196 schema:name Department of Statistics, Kyungpook National University, 80 Daehak-Ro, 41566, Daegu, Republic of Korea
197 rdf:type schema:Organization
198 grid-institutes:grid.412484.f schema:alternateName Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, Republic of Korea
199 schema:name Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, Republic of Korea
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...