Susceptibility of serum lipids to copper-induced peroxidation correlates with the level of high density lipoprotein cholesterol View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-03

AUTHORS

M. Shimonov, I. Pinchuk, A. Bor, I. Beigel, M. Fainaru, M. Rubin, D. Lichtenberg

ABSTRACT

As a first step in evaluating the significance of our recently developed method of monitoring the kinetics of copper-induced oxidation in unfractionated serum, we recorded the kinetics of lipid oxidation in the sera of 62 hyperlipidemic patients and analyzed the correlation between oxidation and lipid composition of the sera [high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, and triglycerides]. We used six factors to characterize the kinetics of oxidation, namely, the maximal absorbance of oxidation products (ODmax), the maximal rate of their production (Vmax), and the time at which the rate was maximal (t(max)) at two wavelengths (245 nm, where 7-ketocholesterol and conjugated dienic hydroperoxides absorb intensely, and 268 nm, where the absorbance is mostly due to dienals). The major conclusions of our analyses are that: (i) Both ODmax and Vmax correlate positively with the sum of concentrations of the major oxidizable lipids, cholesterol, and cholesteryl esters. (ii). The value of t(max), which is a measure of the lag preceding oxidation and therefore reflects the resistance of the serum lipids to copper-induced oxidation, exhibits a negative correlation with HDL cholesterol. Although this finding accords with the observation of shorter lags for HDL than for LDL, it is apparently inconsistent with the role of HDL as an antirisk factor in coronary heart diseases. More... »

PAGES

255-259

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11745-999-0361-0

DOI

http://dx.doi.org/10.1007/s11745-999-0361-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020072757

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10230719


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biochemistry and Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anticholesteremic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Assay", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cholesterol, HDL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Copper", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet, Fat-Restricted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hyperlipidemias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypolipidemic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipid Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipid Peroxidation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipoproteins, LDL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triglycerides", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Physiology and Pharmacology, Tel-Aviv University, Sackler School of Medicine, 69978, Tel Aviv, Israel", 
            "Department of Surgery, Rabin Medical Center, Tel-Aviv University, Sackler School of Medicine, 69978, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimonov", 
        "givenName": "M.", 
        "id": "sg:person.0743656013.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743656013.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Physiology and Pharmacology, Tel-Aviv University, Sackler School of Medicine, 69978, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinchuk", 
        "givenName": "I.", 
        "id": "sg:person.01202521227.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202521227.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Physiology and Pharmacology, Tel-Aviv University, Sackler School of Medicine, 69978, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bor", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Internal Medicine, Rabin Medical Center, Tel-Aviv University, Sackler School of Medicine, 69978, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beigel", 
        "givenName": "I.", 
        "id": "sg:person.0634223254.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634223254.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Internal Medicine, Rabin Medical Center, Tel-Aviv University, Sackler School of Medicine, 69978, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fainaru", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Surgery, Rabin Medical Center, Tel-Aviv University, Sackler School of Medicine, 69978, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubin", 
        "givenName": "M.", 
        "id": "sg:person.0753746761.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753746761.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Physiology and Pharmacology, Tel-Aviv University, Sackler School of Medicine, 69978, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lichtenberg", 
        "givenName": "D.", 
        "id": "sg:person.01201126654.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201126654.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0021-9150(93)90183-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003115923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/cclm.1995.33.10.721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003309344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10715769509147549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004049096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3130781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008865174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3130781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008865174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10715769609088033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009259552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-9120(96)00061-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012183260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00041433-199304000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013356131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00041433-199304000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013356131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bbrc.1995.2700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022005186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07315724.1995.10718472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022539410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0891-5849(92)90181-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024046578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0891-5849(92)90181-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024046578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198904063201407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028503602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-3084(98)00021-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029788643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.21.10316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031697669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198901053200122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046190006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)91129-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046273175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)91129-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046273175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2760(90)90314-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053484842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2760(90)90314-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053484842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.16.7.831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063334291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075449379", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078148243", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079277024", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080056370", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-03", 
    "datePublishedReg": "1999-03-01", 
    "description": "As a first step in evaluating the significance of our recently developed method of monitoring the kinetics of copper-induced oxidation in unfractionated serum, we recorded the kinetics of lipid oxidation in the sera of 62 hyperlipidemic patients and analyzed the correlation between oxidation and lipid composition of the sera [high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, and triglycerides]. We used six factors to characterize the kinetics of oxidation, namely, the maximal absorbance of oxidation products (ODmax), the maximal rate of their production (Vmax), and the time at which the rate was maximal (t(max)) at two wavelengths (245 nm, where 7-ketocholesterol and conjugated dienic hydroperoxides absorb intensely, and 268 nm, where the absorbance is mostly due to dienals). The major conclusions of our analyses are that: (i) Both ODmax and Vmax correlate positively with the sum of concentrations of the major oxidizable lipids, cholesterol, and cholesteryl esters. (ii). The value of t(max), which is a measure of the lag preceding oxidation and therefore reflects the resistance of the serum lipids to copper-induced oxidation, exhibits a negative correlation with HDL cholesterol. Although this finding accords with the observation of shorter lags for HDL than for LDL, it is apparently inconsistent with the role of HDL as an antirisk factor in coronary heart diseases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11745-999-0361-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1006395", 
        "issn": [
          "0024-4201", 
          "1558-9307"
        ], 
        "name": "Lipids", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Susceptibility of serum lipids to copper-induced peroxidation correlates with the level of high density lipoprotein cholesterol", 
    "pagination": "255-259", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5fa399e73698bc850218041bdf96af208becba67e57b0970830a2ec38281ae68"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10230719"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0060450"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11745-999-0361-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020072757"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11745-999-0361-0", 
      "https://app.dimensions.ai/details/publication/pub.1020072757"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11745-999-0361-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11745-999-0361-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11745-999-0361-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11745-999-0361-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11745-999-0361-0'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      72 URIs      43 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11745-999-0361-0 schema:about N1595377d115d4b22ba4c2986937e152d
2 N1c471c791c214f58a05eefca1cc45882
3 N1f52ef6fcb0d4b5c988707f9d0577e7e
4 N256b04315c2e495885936064a2a9e7ab
5 N2f2981f8c3c14f14a1cb38c7ece1d178
6 N317bc9f991de41f391783dfb0a41c7ba
7 N4db86c26be054bbfbbac1071f4622584
8 N525b75a44bc44f0b8b3157e5175afa1f
9 N5bf080b664ef4a0ebf411e74171340b8
10 N67d05f37619244ceb6caa54bdb089c00
11 N9775d1eecc69455585e49508898a806d
12 Na0d016a789c6443eb469fce48bc78561
13 Nad713fa10a2243bea59732ad785f0beb
14 Naf6f765b35e74ff69d7e2a0a3401e602
15 Nbd0e8f38c56a4d9f8feaf7e340c2681d
16 Nd5be7d2200db4c1799b76ee8ae946d59
17 Nd6db33dc1e9a4358a930f193ae9b9c7e
18 Nd7dc1f8fb55c42e5a978c790e2a71e7c
19 Nda5fd459847d472986c46f8a35cbf075
20 Ndbce3e9f7b35460dbba6752225cfc62f
21 Neb1eca094a79449ea83755bd19062213
22 Nfe29c458bb4e405b9e340f6d7bbffe59
23 anzsrc-for:11
24 anzsrc-for:1101
25 schema:author Nfecf40190bfc446381822ac74e954e15
26 schema:citation https://app.dimensions.ai/details/publication/pub.1075449379
27 https://app.dimensions.ai/details/publication/pub.1078148243
28 https://app.dimensions.ai/details/publication/pub.1079277024
29 https://app.dimensions.ai/details/publication/pub.1080056370
30 https://doi.org/10.1006/bbrc.1995.2700
31 https://doi.org/10.1016/0005-2760(90)90314-n
32 https://doi.org/10.1016/0009-9120(96)00061-6
33 https://doi.org/10.1016/0021-9150(93)90183-u
34 https://doi.org/10.1016/0140-6736(92)91129-v
35 https://doi.org/10.1016/0891-5849(92)90181-f
36 https://doi.org/10.1016/s0009-3084(98)00021-8
37 https://doi.org/10.1042/bj3130781
38 https://doi.org/10.1056/nejm198901053200122
39 https://doi.org/10.1056/nejm198904063201407
40 https://doi.org/10.1073/pnas.89.21.10316
41 https://doi.org/10.1080/07315724.1995.10718472
42 https://doi.org/10.1097/00041433-199304000-00007
43 https://doi.org/10.1161/01.atv.16.7.831
44 https://doi.org/10.1515/cclm.1995.33.10.721
45 https://doi.org/10.3109/10715769509147549
46 https://doi.org/10.3109/10715769609088033
47 schema:datePublished 1999-03
48 schema:datePublishedReg 1999-03-01
49 schema:description As a first step in evaluating the significance of our recently developed method of monitoring the kinetics of copper-induced oxidation in unfractionated serum, we recorded the kinetics of lipid oxidation in the sera of 62 hyperlipidemic patients and analyzed the correlation between oxidation and lipid composition of the sera [high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, and triglycerides]. We used six factors to characterize the kinetics of oxidation, namely, the maximal absorbance of oxidation products (ODmax), the maximal rate of their production (Vmax), and the time at which the rate was maximal (t(max)) at two wavelengths (245 nm, where 7-ketocholesterol and conjugated dienic hydroperoxides absorb intensely, and 268 nm, where the absorbance is mostly due to dienals). The major conclusions of our analyses are that: (i) Both ODmax and Vmax correlate positively with the sum of concentrations of the major oxidizable lipids, cholesterol, and cholesteryl esters. (ii). The value of t(max), which is a measure of the lag preceding oxidation and therefore reflects the resistance of the serum lipids to copper-induced oxidation, exhibits a negative correlation with HDL cholesterol. Although this finding accords with the observation of shorter lags for HDL than for LDL, it is apparently inconsistent with the role of HDL as an antirisk factor in coronary heart diseases.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf Nc2dc830c22c64905bf40627e21df5837
54 Nf25b5fca8bed4a1aaa550353e1e88978
55 sg:journal.1006395
56 schema:name Susceptibility of serum lipids to copper-induced peroxidation correlates with the level of high density lipoprotein cholesterol
57 schema:pagination 255-259
58 schema:productId N52b719a1c11f40ec86272ab8c05b66b7
59 N67e2bf2113b94ae4ae62ef81f82b18b3
60 N8b5b9160fce24a76b98474dbf5c71216
61 Nc99dfe24b2ad4f77ac5355f3272a662b
62 Nf7ff3c7528084330ae9335ce062ae5b8
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020072757
64 https://doi.org/10.1007/s11745-999-0361-0
65 schema:sdDatePublished 2019-04-10T13:19
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N2272e458585a41b2a103acc219087d76
68 schema:url http://link.springer.com/10.1007%2Fs11745-999-0361-0
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N1595377d115d4b22ba4c2986937e152d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Anticholesteremic Agents
74 rdf:type schema:DefinedTerm
75 N1c471c791c214f58a05eefca1cc45882 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Predictive Value of Tests
77 rdf:type schema:DefinedTerm
78 N1f52ef6fcb0d4b5c988707f9d0577e7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Middle Aged
80 rdf:type schema:DefinedTerm
81 N2272e458585a41b2a103acc219087d76 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N256b04315c2e495885936064a2a9e7ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Cholesterol, HDL
85 rdf:type schema:DefinedTerm
86 N26dc74acdc5a4bffbf3b7d46045c1378 rdf:first sg:person.01201126654.13
87 rdf:rest rdf:nil
88 N2b32e20e9e124c1b9ddd791e9257a70c rdf:first sg:person.0634223254.42
89 rdf:rest Na2184fefa9f348cdb75c236d4d5a2eac
90 N2f2981f8c3c14f14a1cb38c7ece1d178 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Adult
92 rdf:type schema:DefinedTerm
93 N317bc9f991de41f391783dfb0a41c7ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Lipids
95 rdf:type schema:DefinedTerm
96 N4db86c26be054bbfbbac1071f4622584 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Hypolipidemic Agents
98 rdf:type schema:DefinedTerm
99 N525b75a44bc44f0b8b3157e5175afa1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Regression Analysis
101 rdf:type schema:DefinedTerm
102 N52b719a1c11f40ec86272ab8c05b66b7 schema:name doi
103 schema:value 10.1007/s11745-999-0361-0
104 rdf:type schema:PropertyValue
105 N58bdf61e12c0491eba3d3cf5409c5222 rdf:first Nf9ff55029d184300ad279e98b066bdd8
106 rdf:rest N2b32e20e9e124c1b9ddd791e9257a70c
107 N5bf080b664ef4a0ebf411e74171340b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Copper
109 rdf:type schema:DefinedTerm
110 N67d05f37619244ceb6caa54bdb089c00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Lipid Metabolism
112 rdf:type schema:DefinedTerm
113 N67e2bf2113b94ae4ae62ef81f82b18b3 schema:name readcube_id
114 schema:value 5fa399e73698bc850218041bdf96af208becba67e57b0970830a2ec38281ae68
115 rdf:type schema:PropertyValue
116 N8b5b9160fce24a76b98474dbf5c71216 schema:name pubmed_id
117 schema:value 10230719
118 rdf:type schema:PropertyValue
119 N9775d1eecc69455585e49508898a806d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Humans
121 rdf:type schema:DefinedTerm
122 Na0d016a789c6443eb469fce48bc78561 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Lipid Peroxidation
124 rdf:type schema:DefinedTerm
125 Na2184fefa9f348cdb75c236d4d5a2eac rdf:first Nda58b7632ce54cd9ad334fac53bddd68
126 rdf:rest Nd678d8a3b8094c45a04376af16a910a8
127 Nad713fa10a2243bea59732ad785f0beb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Aged
129 rdf:type schema:DefinedTerm
130 Naf6f765b35e74ff69d7e2a0a3401e602 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Triglycerides
132 rdf:type schema:DefinedTerm
133 Nbd0e8f38c56a4d9f8feaf7e340c2681d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Female
135 rdf:type schema:DefinedTerm
136 Nc2dc830c22c64905bf40627e21df5837 schema:issueNumber 3
137 rdf:type schema:PublicationIssue
138 Nc99dfe24b2ad4f77ac5355f3272a662b schema:name nlm_unique_id
139 schema:value 0060450
140 rdf:type schema:PropertyValue
141 Nd5be7d2200db4c1799b76ee8ae946d59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Male
143 rdf:type schema:DefinedTerm
144 Nd678d8a3b8094c45a04376af16a910a8 rdf:first sg:person.0753746761.93
145 rdf:rest N26dc74acdc5a4bffbf3b7d46045c1378
146 Nd6db33dc1e9a4358a930f193ae9b9c7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Diet, Fat-Restricted
148 rdf:type schema:DefinedTerm
149 Nd7dc1f8fb55c42e5a978c790e2a71e7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Kinetics
151 rdf:type schema:DefinedTerm
152 Nda58b7632ce54cd9ad334fac53bddd68 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
153 schema:familyName Fainaru
154 schema:givenName M.
155 rdf:type schema:Person
156 Nda5fd459847d472986c46f8a35cbf075 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Hyperlipidemias
158 rdf:type schema:DefinedTerm
159 Ndbce3e9f7b35460dbba6752225cfc62f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Diabetes Mellitus, Type 2
161 rdf:type schema:DefinedTerm
162 Ne6792eb72b434df1ace68d1f0aabfd2c rdf:first sg:person.01202521227.31
163 rdf:rest N58bdf61e12c0491eba3d3cf5409c5222
164 Neb1eca094a79449ea83755bd19062213 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Lipoproteins, LDL
166 rdf:type schema:DefinedTerm
167 Nf25b5fca8bed4a1aaa550353e1e88978 schema:volumeNumber 34
168 rdf:type schema:PublicationVolume
169 Nf7ff3c7528084330ae9335ce062ae5b8 schema:name dimensions_id
170 schema:value pub.1020072757
171 rdf:type schema:PropertyValue
172 Nf9ff55029d184300ad279e98b066bdd8 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
173 schema:familyName Bor
174 schema:givenName A.
175 rdf:type schema:Person
176 Nfe29c458bb4e405b9e340f6d7bbffe59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Biological Assay
178 rdf:type schema:DefinedTerm
179 Nfecf40190bfc446381822ac74e954e15 rdf:first sg:person.0743656013.39
180 rdf:rest Ne6792eb72b434df1ace68d1f0aabfd2c
181 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
182 schema:name Medical and Health Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:1101 schema:inDefinedTermSet anzsrc-for:
185 schema:name Medical Biochemistry and Metabolomics
186 rdf:type schema:DefinedTerm
187 sg:journal.1006395 schema:issn 0024-4201
188 1558-9307
189 schema:name Lipids
190 rdf:type schema:Periodical
191 sg:person.01201126654.13 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
192 schema:familyName Lichtenberg
193 schema:givenName D.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201126654.13
195 rdf:type schema:Person
196 sg:person.01202521227.31 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
197 schema:familyName Pinchuk
198 schema:givenName I.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202521227.31
200 rdf:type schema:Person
201 sg:person.0634223254.42 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
202 schema:familyName Beigel
203 schema:givenName I.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634223254.42
205 rdf:type schema:Person
206 sg:person.0743656013.39 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
207 schema:familyName Shimonov
208 schema:givenName M.
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743656013.39
210 rdf:type schema:Person
211 sg:person.0753746761.93 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
212 schema:familyName Rubin
213 schema:givenName M.
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753746761.93
215 rdf:type schema:Person
216 https://app.dimensions.ai/details/publication/pub.1075449379 schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1078148243 schema:CreativeWork
218 https://app.dimensions.ai/details/publication/pub.1079277024 schema:CreativeWork
219 https://app.dimensions.ai/details/publication/pub.1080056370 schema:CreativeWork
220 https://doi.org/10.1006/bbrc.1995.2700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022005186
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/0005-2760(90)90314-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1053484842
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/0009-9120(96)00061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012183260
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/0021-9150(93)90183-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1003115923
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/0140-6736(92)91129-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1046273175
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/0891-5849(92)90181-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1024046578
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/s0009-3084(98)00021-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029788643
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1042/bj3130781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008865174
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1056/nejm198901053200122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046190006
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1056/nejm198904063201407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028503602
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1073/pnas.89.21.10316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031697669
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1080/07315724.1995.10718472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022539410
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1097/00041433-199304000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013356131
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1161/01.atv.16.7.831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063334291
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1515/cclm.1995.33.10.721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003309344
249 rdf:type schema:CreativeWork
250 https://doi.org/10.3109/10715769509147549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004049096
251 rdf:type schema:CreativeWork
252 https://doi.org/10.3109/10715769609088033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009259552
253 rdf:type schema:CreativeWork
254 https://www.grid.ac/institutes/grid.12136.37 schema:alternateName Tel Aviv University
255 schema:name Department of Internal Medicine, Rabin Medical Center, Tel-Aviv University, Sackler School of Medicine, 69978, Tel Aviv, Israel
256 Department of Physiology and Pharmacology, Tel-Aviv University, Sackler School of Medicine, 69978, Tel Aviv, Israel
257 Department of Surgery, Rabin Medical Center, Tel-Aviv University, Sackler School of Medicine, 69978, Tel Aviv, Israel
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...