FE-simulation method for a flexible clamping technology for Body in White assemblies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-18

AUTHORS

Felix Bauer, Alexandra Werber

ABSTRACT

Due to the growing number of derivatives and the rising demand for electric vehicles, flexibility in automotive production becomes more and more important. The use of running clamping technology enables flexible clamping of remote laser welded Body in White assemblies. Although the process design for this new technology is challenging, no digital process design method is available. The finite element (FE) process simulation offers an opportunity to reduce time- and cost-intensive experiments during the part and process design phase. In this article, a new and comprehensive FE-simulation method for running clamping technology is presented. The clamping simulation is validated with experiments using L-specimens. Therefore, the clamping forces required to close the gap between part flanges are evaluated. Further, the clamping and mechanical joining simulation of a Body in White assembly is validated by comparing the resultant joint gaps. The capability of the simulation method is demonstrated by a numerical investigation of the influences of process parameters on the resultant joint gaps. The parameters that were investigated are geometrical inaccuracies, applied clamping force and design of the clamping device. The results obtained indicate that higher geometrical inaccuracies of parts can be accepted when using clamping devices with clamping supports. More... »

PAGES

1-13

References to SciGraph publications

Journal

TITLE

Production Engineering

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11740-019-00890-7

DOI

http://dx.doi.org/10.1007/s11740-019-00890-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112221089


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Daimler (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5433.1", 
          "name": [
            "Daimler AG, B\u00e9la-Bar\u00e9nyi-Stra\u00dfe 1, 71059, Sindelfingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "Felix", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daimler (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5433.1", 
          "name": [
            "Daimler AG, B\u00e9la-Bar\u00e9nyi-Stra\u00dfe 1, 71059, Sindelfingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Werber", 
        "givenName": "Alexandra", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-658-05130-3_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022129786", 
          "https://doi.org/10.1007/978-3-658-05130-3_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23860-4_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026559524", 
          "https://doi.org/10.1007/978-3-642-23860-4_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23860-4_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026559524", 
          "https://doi.org/10.1007/978-3-642-23860-4_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84996-432-6_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037914659", 
          "https://doi.org/10.1007/978-1-84996-432-6_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84996-432-6_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037914659", 
          "https://doi.org/10.1007/978-1-84996-432-6_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33747-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040635541", 
          "https://doi.org/10.1007/978-3-642-33747-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2012.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042427408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.344.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072072082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.611-612.1062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072092565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.651-653.1312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072095060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2017.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085090386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2017.10.1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092710288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/etfa.2016.7733629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093540931"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-18", 
    "datePublishedReg": "2019-02-18", 
    "description": "Due to the growing number of derivatives and the rising demand for electric vehicles, flexibility in automotive production becomes more and more important. The use of running clamping technology enables flexible clamping of remote laser welded Body in White assemblies. Although the process design for this new technology is challenging, no digital process design method is available. The finite element (FE) process simulation offers an opportunity to reduce time- and cost-intensive experiments during the part and process design phase. In this article, a new and comprehensive FE-simulation method for running clamping technology is presented. The clamping simulation is validated with experiments using L-specimens. Therefore, the clamping forces required to close the gap between part flanges are evaluated. Further, the clamping and mechanical joining simulation of a Body in White assembly is validated by comparing the resultant joint gaps. The capability of the simulation method is demonstrated by a numerical investigation of the influences of process parameters on the resultant joint gaps. The parameters that were investigated are geometrical inaccuracies, applied clamping force and design of the clamping device. The results obtained indicate that higher geometrical inaccuracies of parts can be accepted when using clamping devices with clamping supports.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11740-019-00890-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136430", 
        "issn": [
          "0944-6524", 
          "1863-7353"
        ], 
        "name": "Production Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "FE-simulation method for a flexible clamping technology for Body in White assemblies", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f6c395922b47506930f9edc162b6578c3c6065af0d7fe4414cf18cd9d5456d38"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11740-019-00890-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112221089"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11740-019-00890-7", 
      "https://app.dimensions.ai/details/publication/pub.1112221089"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47991_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11740-019-00890-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11740-019-00890-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11740-019-00890-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11740-019-00890-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11740-019-00890-7'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      35 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11740-019-00890-7 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N6cf1e65dedb24f4c8e5f0a1308b4e063
4 schema:citation sg:pub.10.1007/978-1-84996-432-6_19
5 sg:pub.10.1007/978-3-642-23860-4_73
6 sg:pub.10.1007/978-3-642-33747-5_9
7 sg:pub.10.1007/978-3-658-05130-3_17
8 https://doi.org/10.1016/j.jmatprotec.2012.02.012
9 https://doi.org/10.1016/j.proeng.2017.04.043
10 https://doi.org/10.1016/j.proeng.2017.10.1055
11 https://doi.org/10.1109/etfa.2016.7733629
12 https://doi.org/10.4028/www.scientific.net/kem.344.357
13 https://doi.org/10.4028/www.scientific.net/kem.611-612.1062
14 https://doi.org/10.4028/www.scientific.net/kem.651-653.1312
15 schema:datePublished 2019-02-18
16 schema:datePublishedReg 2019-02-18
17 schema:description Due to the growing number of derivatives and the rising demand for electric vehicles, flexibility in automotive production becomes more and more important. The use of running clamping technology enables flexible clamping of remote laser welded Body in White assemblies. Although the process design for this new technology is challenging, no digital process design method is available. The finite element (FE) process simulation offers an opportunity to reduce time- and cost-intensive experiments during the part and process design phase. In this article, a new and comprehensive FE-simulation method for running clamping technology is presented. The clamping simulation is validated with experiments using L-specimens. Therefore, the clamping forces required to close the gap between part flanges are evaluated. Further, the clamping and mechanical joining simulation of a Body in White assembly is validated by comparing the resultant joint gaps. The capability of the simulation method is demonstrated by a numerical investigation of the influences of process parameters on the resultant joint gaps. The parameters that were investigated are geometrical inaccuracies, applied clamping force and design of the clamping device. The results obtained indicate that higher geometrical inaccuracies of parts can be accepted when using clamping devices with clamping supports.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf sg:journal.1136430
22 schema:name FE-simulation method for a flexible clamping technology for Body in White assemblies
23 schema:pagination 1-13
24 schema:productId N49d4a323229f44d9a75fdddba91cec30
25 N6cdefc4392994cbdbd4541968977de0b
26 N9a1af165bdc14221bb0c2138876274be
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112221089
28 https://doi.org/10.1007/s11740-019-00890-7
29 schema:sdDatePublished 2019-04-11T09:13
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nb37b7ae945e44e308297483699545311
32 schema:url https://link.springer.com/10.1007%2Fs11740-019-00890-7
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N169c387681d54ed0a8a3680f29b22392 schema:affiliation https://www.grid.ac/institutes/grid.5433.1
37 schema:familyName Bauer
38 schema:givenName Felix
39 rdf:type schema:Person
40 N49d4a323229f44d9a75fdddba91cec30 schema:name readcube_id
41 schema:value f6c395922b47506930f9edc162b6578c3c6065af0d7fe4414cf18cd9d5456d38
42 rdf:type schema:PropertyValue
43 N6cdefc4392994cbdbd4541968977de0b schema:name dimensions_id
44 schema:value pub.1112221089
45 rdf:type schema:PropertyValue
46 N6cf1e65dedb24f4c8e5f0a1308b4e063 rdf:first N169c387681d54ed0a8a3680f29b22392
47 rdf:rest N86537af3b2554c098731df3d999cb763
48 N86537af3b2554c098731df3d999cb763 rdf:first Nc36b1263b0e7486db4311b5a9e7cfd38
49 rdf:rest rdf:nil
50 N9a1af165bdc14221bb0c2138876274be schema:name doi
51 schema:value 10.1007/s11740-019-00890-7
52 rdf:type schema:PropertyValue
53 Nb37b7ae945e44e308297483699545311 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nc36b1263b0e7486db4311b5a9e7cfd38 schema:affiliation https://www.grid.ac/institutes/grid.5433.1
56 schema:familyName Werber
57 schema:givenName Alexandra
58 rdf:type schema:Person
59 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
60 schema:name Engineering
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
63 schema:name Biomedical Engineering
64 rdf:type schema:DefinedTerm
65 sg:journal.1136430 schema:issn 0944-6524
66 1863-7353
67 schema:name Production Engineering
68 rdf:type schema:Periodical
69 sg:pub.10.1007/978-1-84996-432-6_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037914659
70 https://doi.org/10.1007/978-1-84996-432-6_19
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/978-3-642-23860-4_73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026559524
73 https://doi.org/10.1007/978-3-642-23860-4_73
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/978-3-642-33747-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040635541
76 https://doi.org/10.1007/978-3-642-33747-5_9
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/978-3-658-05130-3_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022129786
79 https://doi.org/10.1007/978-3-658-05130-3_17
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/j.jmatprotec.2012.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042427408
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.proeng.2017.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085090386
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.proeng.2017.10.1055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092710288
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1109/etfa.2016.7733629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093540931
88 rdf:type schema:CreativeWork
89 https://doi.org/10.4028/www.scientific.net/kem.344.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072072082
90 rdf:type schema:CreativeWork
91 https://doi.org/10.4028/www.scientific.net/kem.611-612.1062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072092565
92 rdf:type schema:CreativeWork
93 https://doi.org/10.4028/www.scientific.net/kem.651-653.1312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072095060
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.5433.1 schema:alternateName Daimler (Germany)
96 schema:name Daimler AG, Béla-Barényi-Straße 1, 71059, Sindelfingen, Germany
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...