Laser shock punching: principle and influencing factors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-07

AUTHORS

H. Fenske, F. Vollertsen

ABSTRACT

Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO2 laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By using a shock wave instead of a punch to transmit the cutting force, the cutting clearance ceases to exist. In order to realise single pulse cutting, certain requirements have to be met. On the one hand it is compulsory to produce high enough operating pressures. On the other hand the cutting edge still has to be “sharp” relatively to the only micrometre thick foils. If those requirements are fulfilled, the maximum cuttable foil thickness correlates with the geometrical ratio of pressurized area to cutting path length, which can roughly be described via a balance of forces between the applied force via pressure and the required force for cutting. For foils in the micrometre range size effects have to be considered. Apart from the already mentioned challenges with the geometrical scaling of the cutting edge, single grain effects are relevant for laser shock punching. If the grain size is in the range of the foil thickness, only incomplete cutting can be realised as the foil tends to rupture within the pressurized area and the cut edge exhibits an increased and inhomogeneous burr formation. Based on the identified influencing factors, the possibilities and process limits of laser shock punching can be evaluated. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11740-019-00886-3

DOI

http://dx.doi.org/10.1007/s11740-019-00886-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111982866


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bremen Institute for Applied Beam Technology", 
          "id": "https://www.grid.ac/institutes/grid.432852.a", 
          "name": [
            "BIAS-Bremer Institut f\u00fcr angewandte Strahltechnik GmbH, Klagenfurter Str. 5, 28359, Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fenske", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bremen", 
          "id": "https://www.grid.ac/institutes/grid.7704.4", 
          "name": [
            "BIAS-Bremer Institut f\u00fcr angewandte Strahltechnik GmbH, Klagenfurter Str. 5, 28359, Bremen, Germany", 
            "University of Bremen, 28359, Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vollertsen", 
        "givenName": "F.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2016.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001668439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12289-013-1159-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002245036", 
          "https://doi.org/10.1007/s12289-013-1159-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2005.06.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002760546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11740-013-0521-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014734138", 
          "https://doi.org/10.1007/s11740-013-0521-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2009.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025191323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030029935", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-658-09948-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030029935", 
          "https://doi.org/10.1007/978-3-658-09948-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-658-09948-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030029935", 
          "https://doi.org/10.1007/978-3-658-09948-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2011.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043841942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2010.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044695126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procir.2017.12.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103610114"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-07", 
    "datePublishedReg": "2019-02-07", 
    "description": "Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO2 laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By using a shock wave instead of a punch to transmit the cutting force, the cutting clearance ceases to exist. In order to realise single pulse cutting, certain requirements have to be met. On the one hand it is compulsory to produce high enough operating pressures. On the other hand the cutting edge still has to be \u201csharp\u201d relatively to the only micrometre thick foils. If those requirements are fulfilled, the maximum cuttable foil thickness correlates with the geometrical ratio of pressurized area to cutting path length, which can roughly be described via a balance of forces between the applied force via pressure and the required force for cutting. For foils in the micrometre range size effects have to be considered. Apart from the already mentioned challenges with the geometrical scaling of the cutting edge, single grain effects are relevant for laser shock punching. If the grain size is in the range of the foil thickness, only incomplete cutting can be realised as the foil tends to rupture within the pressurized area and the cut edge exhibits an increased and inhomogeneous burr formation. Based on the identified influencing factors, the possibilities and process limits of laser shock punching can be evaluated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11740-019-00886-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5490259", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136430", 
        "issn": [
          "0944-6524", 
          "1863-7353"
        ], 
        "name": "Production Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "Laser shock punching: principle and influencing factors", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "507a17b85f3d536b4a2d0b4f683d0c112ad72f8b90447e01e5d1cdbc074b111e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11740-019-00886-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111982866"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11740-019-00886-3", 
      "https://app.dimensions.ai/details/publication/pub.1111982866"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000332_0000000332/records_121933_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11740-019-00886-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11740-019-00886-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11740-019-00886-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11740-019-00886-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11740-019-00886-3'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      34 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11740-019-00886-3 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ne2cf1819dd4241fc859808da1b7538f0
4 schema:citation sg:pub.10.1007/978-3-658-09948-0
5 sg:pub.10.1007/s11740-013-0521-z
6 sg:pub.10.1007/s12289-013-1159-2
7 https://app.dimensions.ai/details/publication/pub.1030029935
8 https://doi.org/10.1016/j.cirp.2009.09.002
9 https://doi.org/10.1016/j.ijmachtools.2010.02.003
10 https://doi.org/10.1016/j.ijmachtools.2011.12.004
11 https://doi.org/10.1016/j.jmatprotec.2005.06.038
12 https://doi.org/10.1016/j.jmatprotec.2016.03.018
13 https://doi.org/10.1016/j.procir.2017.12.119
14 schema:datePublished 2019-02-07
15 schema:datePublishedReg 2019-02-07
16 schema:description Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO2 laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By using a shock wave instead of a punch to transmit the cutting force, the cutting clearance ceases to exist. In order to realise single pulse cutting, certain requirements have to be met. On the one hand it is compulsory to produce high enough operating pressures. On the other hand the cutting edge still has to be “sharp” relatively to the only micrometre thick foils. If those requirements are fulfilled, the maximum cuttable foil thickness correlates with the geometrical ratio of pressurized area to cutting path length, which can roughly be described via a balance of forces between the applied force via pressure and the required force for cutting. For foils in the micrometre range size effects have to be considered. Apart from the already mentioned challenges with the geometrical scaling of the cutting edge, single grain effects are relevant for laser shock punching. If the grain size is in the range of the foil thickness, only incomplete cutting can be realised as the foil tends to rupture within the pressurized area and the cut edge exhibits an increased and inhomogeneous burr formation. Based on the identified influencing factors, the possibilities and process limits of laser shock punching can be evaluated.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf sg:journal.1136430
21 schema:name Laser shock punching: principle and influencing factors
22 schema:pagination 1-9
23 schema:productId N1f5375e14fee4b03b2f7b14d5eca5559
24 N540a03e968b6460d86359426fc913622
25 N8e4ed8c6a03143bb8b9c2cc1536d04cc
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111982866
27 https://doi.org/10.1007/s11740-019-00886-3
28 schema:sdDatePublished 2019-04-11T09:03
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nbb6ec505acc041deae0e7a11015da137
31 schema:url https://link.springer.com/10.1007%2Fs11740-019-00886-3
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N1f5375e14fee4b03b2f7b14d5eca5559 schema:name dimensions_id
36 schema:value pub.1111982866
37 rdf:type schema:PropertyValue
38 N356a5d35401f4c2dab0d5882df1e5a46 schema:affiliation https://www.grid.ac/institutes/grid.432852.a
39 schema:familyName Fenske
40 schema:givenName H.
41 rdf:type schema:Person
42 N540a03e968b6460d86359426fc913622 schema:name doi
43 schema:value 10.1007/s11740-019-00886-3
44 rdf:type schema:PropertyValue
45 N8e4ed8c6a03143bb8b9c2cc1536d04cc schema:name readcube_id
46 schema:value 507a17b85f3d536b4a2d0b4f683d0c112ad72f8b90447e01e5d1cdbc074b111e
47 rdf:type schema:PropertyValue
48 N94aa7724107a40f6a7f61780b02937f6 schema:affiliation https://www.grid.ac/institutes/grid.7704.4
49 schema:familyName Vollertsen
50 schema:givenName F.
51 rdf:type schema:Person
52 Nbb6ec505acc041deae0e7a11015da137 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Ne1c2e1748f8b47c2a14d531faeab4695 rdf:first N94aa7724107a40f6a7f61780b02937f6
55 rdf:rest rdf:nil
56 Ne2cf1819dd4241fc859808da1b7538f0 rdf:first N356a5d35401f4c2dab0d5882df1e5a46
57 rdf:rest Ne1c2e1748f8b47c2a14d531faeab4695
58 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
59 schema:name Chemical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
62 schema:name Physical Chemistry (incl. Structural)
63 rdf:type schema:DefinedTerm
64 sg:grant.5490259 http://pending.schema.org/fundedItem sg:pub.10.1007/s11740-019-00886-3
65 rdf:type schema:MonetaryGrant
66 sg:journal.1136430 schema:issn 0944-6524
67 1863-7353
68 schema:name Production Engineering
69 rdf:type schema:Periodical
70 sg:pub.10.1007/978-3-658-09948-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030029935
71 https://doi.org/10.1007/978-3-658-09948-0
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/s11740-013-0521-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014734138
74 https://doi.org/10.1007/s11740-013-0521-z
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s12289-013-1159-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002245036
77 https://doi.org/10.1007/s12289-013-1159-2
78 rdf:type schema:CreativeWork
79 https://app.dimensions.ai/details/publication/pub.1030029935 schema:CreativeWork
80 https://doi.org/10.1016/j.cirp.2009.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025191323
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.ijmachtools.2010.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044695126
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.ijmachtools.2011.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043841942
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.jmatprotec.2005.06.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002760546
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.jmatprotec.2016.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001668439
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.procir.2017.12.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103610114
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.432852.a schema:alternateName Bremen Institute for Applied Beam Technology
93 schema:name BIAS-Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Str. 5, 28359, Bremen, Germany
94 rdf:type schema:Organization
95 https://www.grid.ac/institutes/grid.7704.4 schema:alternateName University of Bremen
96 schema:name BIAS-Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Str. 5, 28359, Bremen, Germany
97 University of Bremen, 28359, Bremen, Germany
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...