Tool flank wear monitoring using torsional–axial vibrations in drilling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

R. S. Nakandhrakumar, D. Dinakaran, J. Pattabiraman, M. Gopal

ABSTRACT

In this paper, monitoring of amplitude variation in the torsional–axial frequency is proposed for evaluating drill flank wear. Vibration signals were captured from the experiments resulting to the drilling process and investigation was focused on the role of torsional–axial coupling on instability predictions arising as a result of drill flank wear in the frequency spectrum. The first and second modes of torsional axial coupling frequencies were found through use of finite element analysis (FEA) and verified using experimental modal analysis (EMA) by the resonance frequency test. The proposed strategy uses dominant peaks of torsional–axial first mode (Tp1) and second mode (Tp2) frequency. The ratio of torsional–axial amplitudes (TP1/TP2) was considered for the monitoring and the evaluation of drill wear and also to nullify process parameter variation. Drill frequencies verified through experimental study showed their capability of predicting drill flank wear. The validation showed the proposed methodology having 80% accuracy and its ability for effective use for monitoring tool wear. More... »

PAGES

1-12

Journal

TITLE

Production Engineering

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11740-018-0866-4

DOI

http://dx.doi.org/10.1007/s11740-018-0866-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110507148


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hindustan University", 
          "id": "https://www.grid.ac/institutes/grid.444645.3", 
          "name": [
            "Department of Mechanical Engineering, Hindustan Institute of Technology and Science, No. 1, Rajiv Gandhi Salai (OMR), Padur, Via Kelambakkam, 603103, Chennai, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakandhrakumar", 
        "givenName": "R. S.", 
        "id": "sg:person.010272426115.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010272426115.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hindustan University", 
          "id": "https://www.grid.ac/institutes/grid.444645.3", 
          "name": [
            "Centre for Automation and Robotics, Hindustan Institute of Technology and Science, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dinakaran", 
        "givenName": "D.", 
        "id": "sg:person.015021117455.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015021117455.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hindustan University", 
          "id": "https://www.grid.ac/institutes/grid.444645.3", 
          "name": [
            "Department of Mechanical Engineering, Hindustan Institute of Technology and Science, No. 1, Rajiv Gandhi Salai (OMR), Padur, Via Kelambakkam, 603103, Chennai, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pattabiraman", 
        "givenName": "J.", 
        "id": "sg:person.012454417023.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012454417023.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SRM University", 
          "id": "https://www.grid.ac/institutes/grid.412742.6", 
          "name": [
            "Department of Mechanical Engineering, SRM University, Katangulathur, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gopal", 
        "givenName": "M.", 
        "id": "sg:person.012462747515.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012462747515.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2006.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005820693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2005.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006892334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procir.2016.03.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009624883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2015.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015457989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2005.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015863121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2005.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015863121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2010.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023422759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2014.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026889201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2014.03.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027729891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2005.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036877873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0890-6955(94)00061-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039062506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rcim.2016.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039951679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1784/insi.2016.58.10.556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042798993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(00)00111-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052709819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)60946-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053036367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2899566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062091912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3439211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062123981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2017.04.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085134465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/bpasts-2017-0060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091333933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/imece2004-59340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092791288"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "In this paper, monitoring of amplitude variation in the torsional\u2013axial frequency is proposed for evaluating drill flank wear. Vibration signals were captured from the experiments resulting to the drilling process and investigation was focused on the role of torsional\u2013axial coupling on instability predictions arising as a result of drill flank wear in the frequency spectrum. The first and second modes of torsional axial coupling frequencies were found through use of finite element analysis (FEA) and verified using experimental modal analysis (EMA) by the resonance frequency test. The proposed strategy uses dominant peaks of torsional\u2013axial first mode (Tp1) and second mode (Tp2) frequency. The ratio of torsional\u2013axial amplitudes (TP1/TP2) was considered for the monitoring and the evaluation of drill wear and also to nullify process parameter variation. Drill frequencies verified through experimental study showed their capability of predicting drill flank wear. The validation showed the proposed methodology having 80% accuracy and its ability for effective use for monitoring tool wear.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11740-018-0866-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136430", 
        "issn": [
          "0944-6524", 
          "1863-7353"
        ], 
        "name": "Production Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "Tool flank wear monitoring using torsional\u2013axial vibrations in drilling", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8478a49a0e01af6ead01f9e62d2b362e388bdd0e187fed548d0d2da6b2b42b90"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11740-018-0866-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110507148"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11740-018-0866-4", 
      "https://app.dimensions.ai/details/publication/pub.1110507148"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000291_0000000291/records_105786_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11740-018-0866-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11740-018-0866-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11740-018-0866-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11740-018-0866-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11740-018-0866-4'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      44 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11740-018-0866-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf0c0bd1da39d41f48fb051c6af0c6e06
4 schema:citation https://doi.org/10.1016/0890-6955(94)00061-n
5 https://doi.org/10.1016/j.cirp.2010.05.010
6 https://doi.org/10.1016/j.ijmachtools.2005.09.018
7 https://doi.org/10.1016/j.ijmachtools.2005.09.019
8 https://doi.org/10.1016/j.ijmachtools.2005.12.010
9 https://doi.org/10.1016/j.ijmachtools.2006.10.006
10 https://doi.org/10.1016/j.ijmachtools.2014.10.011
11 https://doi.org/10.1016/j.ijmachtools.2015.08.004
12 https://doi.org/10.1016/j.procir.2016.03.203
13 https://doi.org/10.1016/j.proeng.2014.03.125
14 https://doi.org/10.1016/j.rcim.2016.11.008
15 https://doi.org/10.1016/j.ymssp.2017.04.030
16 https://doi.org/10.1016/s0007-8506(07)60946-9
17 https://doi.org/10.1016/s0890-6955(00)00111-5
18 https://doi.org/10.1115/1.2899566
19 https://doi.org/10.1115/1.3439211
20 https://doi.org/10.1115/imece2004-59340
21 https://doi.org/10.1515/bpasts-2017-0060
22 https://doi.org/10.1784/insi.2016.58.10.556
23 schema:datePublished 2019-02
24 schema:datePublishedReg 2019-02-01
25 schema:description In this paper, monitoring of amplitude variation in the torsional–axial frequency is proposed for evaluating drill flank wear. Vibration signals were captured from the experiments resulting to the drilling process and investigation was focused on the role of torsional–axial coupling on instability predictions arising as a result of drill flank wear in the frequency spectrum. The first and second modes of torsional axial coupling frequencies were found through use of finite element analysis (FEA) and verified using experimental modal analysis (EMA) by the resonance frequency test. The proposed strategy uses dominant peaks of torsional–axial first mode (Tp1) and second mode (Tp2) frequency. The ratio of torsional–axial amplitudes (TP1/TP2) was considered for the monitoring and the evaluation of drill wear and also to nullify process parameter variation. Drill frequencies verified through experimental study showed their capability of predicting drill flank wear. The validation showed the proposed methodology having 80% accuracy and its ability for effective use for monitoring tool wear.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf sg:journal.1136430
30 schema:name Tool flank wear monitoring using torsional–axial vibrations in drilling
31 schema:pagination 1-12
32 schema:productId N6ce3bb42c78a4477a24797596ef12bb6
33 N7f725bffd56d4e748b63cb4331817d6a
34 Nae738b08ae0843a8902a9a54c7d58b48
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110507148
36 https://doi.org/10.1007/s11740-018-0866-4
37 schema:sdDatePublished 2019-04-11T08:21
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Na685899e36fa438db13af68ce2b21161
40 schema:url https://link.springer.com/10.1007%2Fs11740-018-0866-4
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0fcbbb9e74ad4c11b2aa4dfcf0068eeb rdf:first sg:person.012454417023.15
45 rdf:rest N83b876bdd9f046558e0192664f7fb037
46 N37ba449991984f10aceccdb42ed96d4c rdf:first sg:person.015021117455.55
47 rdf:rest N0fcbbb9e74ad4c11b2aa4dfcf0068eeb
48 N6ce3bb42c78a4477a24797596ef12bb6 schema:name doi
49 schema:value 10.1007/s11740-018-0866-4
50 rdf:type schema:PropertyValue
51 N7f725bffd56d4e748b63cb4331817d6a schema:name readcube_id
52 schema:value 8478a49a0e01af6ead01f9e62d2b362e388bdd0e187fed548d0d2da6b2b42b90
53 rdf:type schema:PropertyValue
54 N83b876bdd9f046558e0192664f7fb037 rdf:first sg:person.012462747515.26
55 rdf:rest rdf:nil
56 Na685899e36fa438db13af68ce2b21161 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nae738b08ae0843a8902a9a54c7d58b48 schema:name dimensions_id
59 schema:value pub.1110507148
60 rdf:type schema:PropertyValue
61 Nf0c0bd1da39d41f48fb051c6af0c6e06 rdf:first sg:person.010272426115.72
62 rdf:rest N37ba449991984f10aceccdb42ed96d4c
63 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
64 schema:name Engineering
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
67 schema:name Materials Engineering
68 rdf:type schema:DefinedTerm
69 sg:journal.1136430 schema:issn 0944-6524
70 1863-7353
71 schema:name Production Engineering
72 rdf:type schema:Periodical
73 sg:person.010272426115.72 schema:affiliation https://www.grid.ac/institutes/grid.444645.3
74 schema:familyName Nakandhrakumar
75 schema:givenName R. S.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010272426115.72
77 rdf:type schema:Person
78 sg:person.012454417023.15 schema:affiliation https://www.grid.ac/institutes/grid.444645.3
79 schema:familyName Pattabiraman
80 schema:givenName J.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012454417023.15
82 rdf:type schema:Person
83 sg:person.012462747515.26 schema:affiliation https://www.grid.ac/institutes/grid.412742.6
84 schema:familyName Gopal
85 schema:givenName M.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012462747515.26
87 rdf:type schema:Person
88 sg:person.015021117455.55 schema:affiliation https://www.grid.ac/institutes/grid.444645.3
89 schema:familyName Dinakaran
90 schema:givenName D.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015021117455.55
92 rdf:type schema:Person
93 https://doi.org/10.1016/0890-6955(94)00061-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1039062506
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.cirp.2010.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023422759
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.ijmachtools.2005.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036877873
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.ijmachtools.2005.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015863121
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.ijmachtools.2005.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006892334
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.ijmachtools.2006.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005820693
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.ijmachtools.2014.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026889201
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.ijmachtools.2015.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015457989
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.procir.2016.03.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009624883
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.proeng.2014.03.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027729891
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.rcim.2016.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039951679
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.ymssp.2017.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085134465
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0007-8506(07)60946-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053036367
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0890-6955(00)00111-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052709819
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1115/1.2899566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062091912
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1115/1.3439211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062123981
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1115/imece2004-59340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092791288
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1515/bpasts-2017-0060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091333933
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1784/insi.2016.58.10.556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042798993
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.412742.6 schema:alternateName SRM University
132 schema:name Department of Mechanical Engineering, SRM University, Katangulathur, Chennai, India
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.444645.3 schema:alternateName Hindustan University
135 schema:name Centre for Automation and Robotics, Hindustan Institute of Technology and Science, Chennai, India
136 Department of Mechanical Engineering, Hindustan Institute of Technology and Science, No. 1, Rajiv Gandhi Salai (OMR), Padur, Via Kelambakkam, 603103, Chennai, Tamil Nadu, India
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...