Proposal method for the classification of industrial accident scenarios based on the improved principal components analysis (improved PCA) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Hafaidh Hadef, Mébarek Djebabra

ABSTRACT

Using a risk matrix for Risk mapping constitutes the basis of risk management strategy. It aims to classify the identified risks with regards to their management and control. This risk classification, which is based on the frequency and the severity dimensions, is often carried out according to a procedure founded on experts’ judgments. In order to overcome the subjectivity bias of this classification, this paper presents the contribution of the Principal Components Analysis (PCA) method: an exploratory method for graphing risks based on factors that allow a better visualized classification of scenarios accidents. Still, the commonly encountered problem in the data classified by the PCA method resides in the main factors of classification; we judged useful to frame these letters by an algebraic formulation to make an improvement of this classification possible. The obtained results show that the suggested method is a promising alternative to solve the recurring problems of risk matrices, notably in accident scenarios’ classification. More... »

PAGES

1-8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11740-018-0859-3

DOI

http://dx.doi.org/10.1007/s11740-018-0859-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110257545


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Batna", 
          "id": "https://www.grid.ac/institutes/grid.440475.6", 
          "name": [
            "LRPI Laboratory, University of Batna, 2 M. BenBoulaid Batna, Batna, Algeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hadef", 
        "givenName": "Hafaidh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Batna", 
          "id": "https://www.grid.ac/institutes/grid.440475.6", 
          "name": [
            "LRPI Laboratory, University of Batna, 2 M. BenBoulaid Batna, Batna, Algeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Djebabra", 
        "givenName": "M\u00e9barek", 
        "id": "sg:person.013245352365.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245352365.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/prs.11768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003331624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prs.680160208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015213453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jlp.2015.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015616345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jlp.2010.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018917752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0950-4230(02)00008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022124548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0308-303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025364910", 
          "https://doi.org/10.1038/nbt0308-303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jlp.2005.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026984773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jlp.2015.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029043668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jlp.2011.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030801029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1904-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639131", 
          "https://doi.org/10.1007/978-1-4757-1904-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1904-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639131", 
          "https://doi.org/10.1007/978-1-4757-1904-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2010.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034009510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssci.2010.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034573078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prs.680160215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036124415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3923/jas.2013.4188.4194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037220699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssci.2015.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037883317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prs.11684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042501077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2015.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049516051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jlp.2016.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053260954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2468-8967(16)30037-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074217223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2017.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091307123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2017.08.179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091425013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2017.11.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093139077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2018.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100738468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2018.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100792555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470935422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106832687"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Using a risk matrix for Risk mapping constitutes the basis of risk management strategy. It aims to classify the identified risks with regards to their management and control. This risk classification, which is based on the frequency and the severity dimensions, is often carried out according to a procedure founded on experts\u2019 judgments. In order to overcome the subjectivity bias of this classification, this paper presents the contribution of the Principal Components Analysis (PCA) method: an exploratory method for graphing risks based on factors that allow a better visualized classification of scenarios accidents. Still, the commonly encountered problem in the data classified by the PCA method resides in the main factors of classification; we judged useful to frame these letters by an algebraic formulation to make an improvement of this classification possible. The obtained results show that the suggested method is a promising alternative to solve the recurring problems of risk matrices, notably in accident scenarios\u2019 classification.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11740-018-0859-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136430", 
        "issn": [
          "0944-6524", 
          "1863-7353"
        ], 
        "name": "Production Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "Proposal method for the classification of industrial accident scenarios based on the improved principal components analysis (improved PCA)", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4c38b3e72a6e55178e16e71f9a3788d58877ee634d823145b2c56eaac699939c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11740-018-0859-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110257545"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11740-018-0859-3", 
      "https://app.dimensions.ai/details/publication/pub.1110257545"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000278_0000000278/records_79630_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11740-018-0859-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11740-018-0859-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11740-018-0859-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11740-018-0859-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11740-018-0859-3'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      50 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11740-018-0859-3 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N2d1d4bb93d8b4fa58f1443186f5a27d1
4 schema:citation sg:pub.10.1007/978-1-4757-1904-8
5 sg:pub.10.1038/nbt0308-303
6 https://doi.org/10.1002/9780470935422
7 https://doi.org/10.1002/prs.11684
8 https://doi.org/10.1002/prs.11768
9 https://doi.org/10.1002/prs.680160208
10 https://doi.org/10.1002/prs.680160215
11 https://doi.org/10.1016/j.commatsci.2015.05.010
12 https://doi.org/10.1016/j.compbiolchem.2018.01.009
13 https://doi.org/10.1016/j.jlp.2005.03.002
14 https://doi.org/10.1016/j.jlp.2010.06.001
15 https://doi.org/10.1016/j.jlp.2011.03.004
16 https://doi.org/10.1016/j.jlp.2015.11.023
17 https://doi.org/10.1016/j.jlp.2015.12.005
18 https://doi.org/10.1016/j.jlp.2016.09.016
19 https://doi.org/10.1016/j.patcog.2010.12.015
20 https://doi.org/10.1016/j.patcog.2018.01.018
21 https://doi.org/10.1016/j.physa.2017.11.115
22 https://doi.org/10.1016/j.procs.2017.06.017
23 https://doi.org/10.1016/j.procs.2017.08.179
24 https://doi.org/10.1016/j.ssci.2010.04.005
25 https://doi.org/10.1016/j.ssci.2015.02.014
26 https://doi.org/10.1016/s0950-4230(02)00008-6
27 https://doi.org/10.1016/s2468-8967(16)30037-4
28 https://doi.org/10.3923/jas.2013.4188.4194
29 schema:datePublished 2019-02
30 schema:datePublishedReg 2019-02-01
31 schema:description Using a risk matrix for Risk mapping constitutes the basis of risk management strategy. It aims to classify the identified risks with regards to their management and control. This risk classification, which is based on the frequency and the severity dimensions, is often carried out according to a procedure founded on experts’ judgments. In order to overcome the subjectivity bias of this classification, this paper presents the contribution of the Principal Components Analysis (PCA) method: an exploratory method for graphing risks based on factors that allow a better visualized classification of scenarios accidents. Still, the commonly encountered problem in the data classified by the PCA method resides in the main factors of classification; we judged useful to frame these letters by an algebraic formulation to make an improvement of this classification possible. The obtained results show that the suggested method is a promising alternative to solve the recurring problems of risk matrices, notably in accident scenarios’ classification.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf sg:journal.1136430
36 schema:name Proposal method for the classification of industrial accident scenarios based on the improved principal components analysis (improved PCA)
37 schema:pagination 1-8
38 schema:productId N1c955e91c3e4471c9dece9df217995c9
39 N2e8899fd427e4e97b3eb25930934c1fd
40 N4e9ddcde6cd640849b88e7c032064d08
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110257545
42 https://doi.org/10.1007/s11740-018-0859-3
43 schema:sdDatePublished 2019-04-11T08:16
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N8f246b2db5c54b4e89fb30293d453659
46 schema:url https://link.springer.com/10.1007%2Fs11740-018-0859-3
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N1c955e91c3e4471c9dece9df217995c9 schema:name dimensions_id
51 schema:value pub.1110257545
52 rdf:type schema:PropertyValue
53 N2d1d4bb93d8b4fa58f1443186f5a27d1 rdf:first Nb1d6d5c53bdc49a693e45dea65906bb3
54 rdf:rest Nf5c3039119fa4aa4be0c467c6dd0447b
55 N2e8899fd427e4e97b3eb25930934c1fd schema:name readcube_id
56 schema:value 4c38b3e72a6e55178e16e71f9a3788d58877ee634d823145b2c56eaac699939c
57 rdf:type schema:PropertyValue
58 N4e9ddcde6cd640849b88e7c032064d08 schema:name doi
59 schema:value 10.1007/s11740-018-0859-3
60 rdf:type schema:PropertyValue
61 N8f246b2db5c54b4e89fb30293d453659 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nb1d6d5c53bdc49a693e45dea65906bb3 schema:affiliation https://www.grid.ac/institutes/grid.440475.6
64 schema:familyName Hadef
65 schema:givenName Hafaidh
66 rdf:type schema:Person
67 Nf5c3039119fa4aa4be0c467c6dd0447b rdf:first sg:person.013245352365.19
68 rdf:rest rdf:nil
69 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
70 schema:name Medical and Health Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
73 schema:name Public Health and Health Services
74 rdf:type schema:DefinedTerm
75 sg:journal.1136430 schema:issn 0944-6524
76 1863-7353
77 schema:name Production Engineering
78 rdf:type schema:Periodical
79 sg:person.013245352365.19 schema:affiliation https://www.grid.ac/institutes/grid.440475.6
80 schema:familyName Djebabra
81 schema:givenName Mébarek
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245352365.19
83 rdf:type schema:Person
84 sg:pub.10.1007/978-1-4757-1904-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031639131
85 https://doi.org/10.1007/978-1-4757-1904-8
86 rdf:type schema:CreativeWork
87 sg:pub.10.1038/nbt0308-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025364910
88 https://doi.org/10.1038/nbt0308-303
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/9780470935422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106832687
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1002/prs.11684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042501077
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/prs.11768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003331624
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1002/prs.680160208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015213453
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/prs.680160215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036124415
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.commatsci.2015.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049516051
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.compbiolchem.2018.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100792555
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.jlp.2005.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026984773
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.jlp.2010.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018917752
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jlp.2011.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030801029
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jlp.2015.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029043668
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.jlp.2015.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015616345
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jlp.2016.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053260954
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.patcog.2010.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034009510
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.patcog.2018.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100738468
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.physa.2017.11.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093139077
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.procs.2017.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091307123
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.procs.2017.08.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091425013
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ssci.2010.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034573078
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ssci.2015.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037883317
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0950-4230(02)00008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022124548
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s2468-8967(16)30037-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074217223
133 rdf:type schema:CreativeWork
134 https://doi.org/10.3923/jas.2013.4188.4194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037220699
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.440475.6 schema:alternateName University of Batna
137 schema:name LRPI Laboratory, University of Batna, 2 M. BenBoulaid Batna, Batna, Algeria
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...