Cyber physical systems for predictive production systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-16

AUTHORS

Jay Lee, Chao Jin, Behrad Bagheri

ABSTRACT

As disruptive technologies like Industry 4.0 and Internet of Things advance at a breakneck speed, modern manufacturing is ready to embrace the systematic deployment of predictive production systems. The predictive production system is an intelligent manufacturing system where networked assets are equipped with self-awareness to predict, root cause, and reconfigure faulty events automatically. Cyber physical systems are one of the core enabling technologies within which information from all the related perspectives are analyzed and interconnected between physical factory floor and the cyber computational space. It intertwines with smart analytics to comprehend invisible issues for rapid decision making. In this paper, a systematic approach is proposed on how cyber physical systems can be applied to predictive production systems to inject resilience and interoperability so that the productivity of manufacturing can be optimized. More... »

PAGES

155-165

References to SciGraph publications

  • 2015-05-09. Smart Factory Systems in INFORMATIK SPEKTRUM
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11740-017-0729-4

    DOI

    http://dx.doi.org/10.1007/s11740-017-0729-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084032854


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "NSF Industry/University Cooperative Research Center for Intelligent Maintenance Systems, University of Cincinnati, 567 Baldwin Hall, 45221, Cincinnati, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "NSF Industry/University Cooperative Research Center for Intelligent Maintenance Systems, University of Cincinnati, 567 Baldwin Hall, 45221, Cincinnati, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Jay", 
            "id": "sg:person.0607121671.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607121671.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NSF Industry/University Cooperative Research Center for Intelligent Maintenance Systems, University of Cincinnati, 567 Baldwin Hall, 45221, Cincinnati, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "NSF Industry/University Cooperative Research Center for Intelligent Maintenance Systems, University of Cincinnati, 567 Baldwin Hall, 45221, Cincinnati, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jin", 
            "givenName": "Chao", 
            "id": "sg:person.012717311401.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012717311401.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NSF Industry/University Cooperative Research Center for Intelligent Maintenance Systems, University of Cincinnati, 567 Baldwin Hall, 45221, Cincinnati, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "NSF Industry/University Cooperative Research Center for Intelligent Maintenance Systems, University of Cincinnati, 567 Baldwin Hall, 45221, Cincinnati, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bagheri", 
            "givenName": "Behrad", 
            "id": "sg:person.011414325420.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011414325420.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00287-015-0891-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019967484", 
              "https://doi.org/10.1007/s00287-015-0891-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03-16", 
        "datePublishedReg": "2017-03-16", 
        "description": "As disruptive technologies like Industry 4.0 and Internet of Things advance at a breakneck speed, modern manufacturing is ready to embrace the systematic deployment of predictive production systems. The predictive production system is an intelligent manufacturing system where networked assets are equipped with self-awareness to predict, root cause, and reconfigure faulty events automatically. Cyber physical systems are one of the core enabling technologies within which information from all the related perspectives are analyzed and interconnected between physical factory floor and the cyber computational space. It intertwines with smart analytics to comprehend invisible issues for rapid decision making. In this paper, a systematic approach is proposed on how cyber physical systems can be applied to predictive production systems to inject resilience and interoperability so that the productivity of manufacturing can be optimized.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11740-017-0729-4", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136430", 
            "issn": [
              "0944-6524", 
              "1863-7353"
            ], 
            "name": "Production Engineering", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "cyber-physical systems", 
          "cyber computational space", 
          "Internet of Things", 
          "intelligent manufacturing systems", 
          "physical systems", 
          "smart analytics", 
          "networked assets", 
          "Industry 4.0", 
          "factory floor", 
          "manufacturing systems", 
          "disruptive technologies", 
          "productivity of manufacturing", 
          "faulty events", 
          "modern manufacturing", 
          "production systems", 
          "computational space", 
          "rapid decisions", 
          "systematic deployment", 
          "interoperability", 
          "technology", 
          "analytics", 
          "Internet", 
          "manufacturing", 
          "breakneck speed", 
          "systematic approach", 
          "system", 
          "related perspectives", 
          "root cause", 
          "deployment", 
          "things", 
          "invisible issues", 
          "information", 
          "speed", 
          "decisions", 
          "issues", 
          "space", 
          "assets", 
          "floor", 
          "core", 
          "resilience", 
          "perspective", 
          "productivity", 
          "approach", 
          "events", 
          "cause", 
          "paper"
        ], 
        "name": "Cyber physical systems for predictive production systems", 
        "pagination": "155-165", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084032854"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11740-017-0729-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11740-017-0729-4", 
          "https://app.dimensions.ai/details/publication/pub.1084032854"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_721.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11740-017-0729-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11740-017-0729-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11740-017-0729-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11740-017-0729-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11740-017-0729-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    125 TRIPLES      21 PREDICATES      72 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11740-017-0729-4 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0806
    4 schema:author Nae03ee7cf9634f0db960c823a563b0b2
    5 schema:citation sg:pub.10.1007/s00287-015-0891-z
    6 schema:datePublished 2017-03-16
    7 schema:datePublishedReg 2017-03-16
    8 schema:description As disruptive technologies like Industry 4.0 and Internet of Things advance at a breakneck speed, modern manufacturing is ready to embrace the systematic deployment of predictive production systems. The predictive production system is an intelligent manufacturing system where networked assets are equipped with self-awareness to predict, root cause, and reconfigure faulty events automatically. Cyber physical systems are one of the core enabling technologies within which information from all the related perspectives are analyzed and interconnected between physical factory floor and the cyber computational space. It intertwines with smart analytics to comprehend invisible issues for rapid decision making. In this paper, a systematic approach is proposed on how cyber physical systems can be applied to predictive production systems to inject resilience and interoperability so that the productivity of manufacturing can be optimized.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N533e83244cbd4f91be5399f165c867c4
    12 Nd40143314528446ca3e59d88538b46d9
    13 sg:journal.1136430
    14 schema:keywords Industry 4.0
    15 Internet
    16 Internet of Things
    17 analytics
    18 approach
    19 assets
    20 breakneck speed
    21 cause
    22 computational space
    23 core
    24 cyber computational space
    25 cyber-physical systems
    26 decisions
    27 deployment
    28 disruptive technologies
    29 events
    30 factory floor
    31 faulty events
    32 floor
    33 information
    34 intelligent manufacturing systems
    35 interoperability
    36 invisible issues
    37 issues
    38 manufacturing
    39 manufacturing systems
    40 modern manufacturing
    41 networked assets
    42 paper
    43 perspective
    44 physical systems
    45 production systems
    46 productivity
    47 productivity of manufacturing
    48 rapid decisions
    49 related perspectives
    50 resilience
    51 root cause
    52 smart analytics
    53 space
    54 speed
    55 system
    56 systematic approach
    57 systematic deployment
    58 technology
    59 things
    60 schema:name Cyber physical systems for predictive production systems
    61 schema:pagination 155-165
    62 schema:productId N2d9437c7f96f410ca53c16d8f7770446
    63 N781c2640cbbf44eeb236be572c856266
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084032854
    65 https://doi.org/10.1007/s11740-017-0729-4
    66 schema:sdDatePublished 2022-09-02T16:00
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher N01a648aa58124a56b55dc4ef9b81d83e
    69 schema:url https://doi.org/10.1007/s11740-017-0729-4
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N01a648aa58124a56b55dc4ef9b81d83e schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N2d9437c7f96f410ca53c16d8f7770446 schema:name doi
    76 schema:value 10.1007/s11740-017-0729-4
    77 rdf:type schema:PropertyValue
    78 N533e83244cbd4f91be5399f165c867c4 schema:issueNumber 2
    79 rdf:type schema:PublicationIssue
    80 N665146d55ece4701a8bdcfaa5b82b2cc rdf:first sg:person.011414325420.56
    81 rdf:rest rdf:nil
    82 N781c2640cbbf44eeb236be572c856266 schema:name dimensions_id
    83 schema:value pub.1084032854
    84 rdf:type schema:PropertyValue
    85 Nae03ee7cf9634f0db960c823a563b0b2 rdf:first sg:person.0607121671.08
    86 rdf:rest Neebe04eebab54d1c831e83ad60d76383
    87 Nd40143314528446ca3e59d88538b46d9 schema:volumeNumber 11
    88 rdf:type schema:PublicationVolume
    89 Neebe04eebab54d1c831e83ad60d76383 rdf:first sg:person.012717311401.07
    90 rdf:rest N665146d55ece4701a8bdcfaa5b82b2cc
    91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Information and Computing Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Artificial Intelligence and Image Processing
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Information Systems
    99 rdf:type schema:DefinedTerm
    100 sg:journal.1136430 schema:issn 0944-6524
    101 1863-7353
    102 schema:name Production Engineering
    103 schema:publisher Springer Nature
    104 rdf:type schema:Periodical
    105 sg:person.011414325420.56 schema:affiliation grid-institutes:grid.24827.3b
    106 schema:familyName Bagheri
    107 schema:givenName Behrad
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011414325420.56
    109 rdf:type schema:Person
    110 sg:person.012717311401.07 schema:affiliation grid-institutes:grid.24827.3b
    111 schema:familyName Jin
    112 schema:givenName Chao
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012717311401.07
    114 rdf:type schema:Person
    115 sg:person.0607121671.08 schema:affiliation grid-institutes:grid.24827.3b
    116 schema:familyName Lee
    117 schema:givenName Jay
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607121671.08
    119 rdf:type schema:Person
    120 sg:pub.10.1007/s00287-015-0891-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019967484
    121 https://doi.org/10.1007/s00287-015-0891-z
    122 rdf:type schema:CreativeWork
    123 grid-institutes:grid.24827.3b schema:alternateName NSF Industry/University Cooperative Research Center for Intelligent Maintenance Systems, University of Cincinnati, 567 Baldwin Hall, 45221, Cincinnati, OH, USA
    124 schema:name NSF Industry/University Cooperative Research Center for Intelligent Maintenance Systems, University of Cincinnati, 567 Baldwin Hall, 45221, Cincinnati, OH, USA
    125 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...