Artificial neural networks and risk stratification in emergency departments View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Greta Falavigna, Giorgio Costantino, Raffaello Furlan, James V. Quinn, Andrea Ungar, Roberto Ippoliti

ABSTRACT

Emergency departments are characterized by the need for quick diagnosis under pressure. To select the most appropriate treatment, a series of rules to support decision-making has been offered by scientific societies. The effectiveness of these rules affects the appropriateness of treatment and the hospitalization of patients. Analyzing a sample of 1844 patients and focusing on the decision to hospitalize a patient after a syncope event to prevent severe short-term outcomes, this work proposes a new algorithm based on neural networks. Artificial neural networks are a non-parametric technique with the well-known ability to generalize behaviors, and they can thus predict severe short-term outcomes with pre-selected levels of sensitivity and specificity. This innovative technique can outperform the traditional models, since it does not require a specific functional form, i.e., the data are not supposed to be distributed following a specific design. Based on our results, the innovative model can predict hospitalization with a sensitivity of 100% and a specificity of 79%, significantly increasing the appropriateness of medical treatment and, as a result, hospital efficiency. According to Garson's Indexes, the most significant variables are exertion, the absence of symptoms, and the patient's gender. On the contrary, cardio-vascular history, hypertension, and age have the lowest impact on the determination of the subject's health status. The main application of this new technology is the adoption of smart solutions (e.g., a mobile app) to customize the stratification of patients admitted to emergency departments (ED)s after a syncope event. Indeed, the adoption of these smart solutions gives the opportunity to customize risk stratification according to the specific clinical case (i.e., the patient's health status) and the physician's decision-making process (i.e., the desired levels of sensitivity and specificity). Moreover, a decision-making process based on these smart solutions might ensure a more effective use of available resources, improving the management of syncope patients and reducing the cost of inappropriate treatment and hospitalization. More... »

PAGES

291-299

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11739-018-1971-2

DOI

http://dx.doi.org/10.1007/s11739-018-1971-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107802445

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30353271


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "CNR-IRCrES, Research Institute on Sustainable Economic Growth, Moncalieri, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Falavigna", 
        "givenName": "Greta", 
        "id": "sg:person.013736020156.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736020156.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico", 
          "id": "https://www.grid.ac/institutes/grid.414818.0", 
          "name": [
            "Clinical Medicine Department, Fondazione IRCCS, Ca\u2019 Granda, Ospedale Maggiore Policlinico, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costantino", 
        "givenName": "Giorgio", 
        "id": "sg:person.0705265632.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705265632.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humanitas Research Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417728.f", 
          "name": [
            "Department of Biomedical Sciences, Humanitas University, Humanitas Research Hospital, Rozzano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furlan", 
        "givenName": "Raffaello", 
        "id": "sg:person.0712265673.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712265673.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Division of Emergency Medicine, Stanford University, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quinn", 
        "givenName": "James V.", 
        "id": "sg:person.014575004662.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575004662.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Azienda Ospedaliero-Universitaria Careggi", 
          "id": "https://www.grid.ac/institutes/grid.24704.35", 
          "name": [
            "Syncope Unit, Geriatric Medicine and Cardiology, Careggi University Hospital, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ungar", 
        "givenName": "Andrea", 
        "id": "sg:person.01110631213.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110631213.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Department of Management, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ippoliti", 
        "givenName": "Roberto", 
        "id": "sg:person.01360246441.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360246441.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0047-2727(02)00216-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004301479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0047-2727(02)00216-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004301479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthpol.2010.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005016751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1386-5056(01)00174-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006791720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9343(98)00054-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007744655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthpol.2015.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011761201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0196-0644(03)00823-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014401886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1525-1497.2002.10750.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017755591", 
          "https://doi.org/10.1046/j.1525-1497.2002.10750.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-5915.1993.tb00491.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017942566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.annemergmed.2004.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018207248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hec.1560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019964932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hec.1560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019964932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajem.2008.12.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020188012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2004.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023604771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008668718837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023647063", 
          "https://doi.org/10.1023/a:1008668718837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthpol.2013.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023656404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccl.2012.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024081230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0548(96)00088-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025953808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmedinf.2011.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027773177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.annemergmed.2005.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029445193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.02.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029680339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2008.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030855132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8510(03)00023-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032968488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8510(03)00023-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032968488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1553-2712.2011.01120.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033056719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmedinf.2006.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033540132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.8044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036372206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(03)00372-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038911658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(03)00372-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038911658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-5915.1992.tb00425.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038988524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.08.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039154450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8510(00)00092-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039437914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2011.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039480609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2007.08.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039507981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mej.0b013e3282fce7af", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041564394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mej.0b013e3282fce7af", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041564394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mem.2002.129171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041839936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mem.2002.129171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041839936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.annemergmed.2014.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044269890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2003.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045615752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266462300103186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048671758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1386-5056(00)00065-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048716202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10198-014-0619-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049220108", 
          "https://doi.org/10.1007/s10198-014-0619-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/hrt.2008.143123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053082030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehv378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059576659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/europace/euw336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059578015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/intqhc/7.3.219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059712950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.58325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijbpm.2008.016636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067438850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15171/ijhpm.2018.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105302688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hpm.2591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105872127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hpm.2591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105872127"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Emergency departments are characterized by the need for quick diagnosis under pressure. To select the most appropriate treatment, a series of rules to support decision-making has been offered by scientific societies. The effectiveness of these rules affects the appropriateness of treatment and the hospitalization of patients. Analyzing a sample of 1844 patients and focusing on the decision to hospitalize a patient after a syncope event to prevent severe short-term outcomes, this work proposes a new algorithm based on neural networks. Artificial neural networks are a non-parametric technique with the well-known ability to generalize behaviors, and they can thus predict severe short-term outcomes with pre-selected levels of sensitivity and specificity. This innovative technique can outperform the traditional models, since it does not require a specific functional form, i.e., the data are not supposed to be distributed following a specific design. Based on our results, the innovative model can predict hospitalization with a sensitivity of 100% and a specificity of 79%, significantly increasing the appropriateness of medical treatment and, as a result, hospital efficiency. According to Garson's Indexes, the most significant variables are exertion, the absence of symptoms, and the patient's gender. On the contrary, cardio-vascular history, hypertension, and age have the lowest impact on the determination of the subject's health status. The main application of this new technology is the adoption of smart solutions (e.g., a mobile app) to customize the stratification of patients admitted to emergency departments (ED)s after a syncope event. Indeed, the adoption of these smart solutions gives the opportunity to customize risk stratification according to the specific clinical case (i.e., the patient's health status) and the physician's decision-making process (i.e., the desired levels of sensitivity and specificity). Moreover, a decision-making process based on these smart solutions might ensure a more effective use of available resources, improving the management of syncope patients and reducing the cost of inappropriate treatment and hospitalization.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11739-018-1971-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295016", 
        "issn": [
          "1828-0447", 
          "1970-9366"
        ], 
        "name": "Internal and Emergency Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Artificial neural networks and risk stratification in emergency departments", 
    "pagination": "291-299", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dc503f4d5f20bc8ecf10c9de03e1c4bb20fb20a68708ecc81deb3191f8c1b8c3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30353271"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101263418"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11739-018-1971-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107802445"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11739-018-1971-2", 
      "https://app.dimensions.ai/details/publication/pub.1107802445"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54297_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11739-018-1971-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11739-018-1971-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11739-018-1971-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11739-018-1971-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11739-018-1971-2'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11739-018-1971-2 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N5bf0c7f1d2a146d8ba012e613b890114
4 schema:citation sg:pub.10.1007/s10198-014-0619-z
5 sg:pub.10.1023/a:1008668718837
6 sg:pub.10.1046/j.1525-1497.2002.10750.x
7 https://doi.org/10.1002/hec.1560
8 https://doi.org/10.1002/hpm.2591
9 https://doi.org/10.1002/hyp.8044
10 https://doi.org/10.1016/0893-6080(89)90020-8
11 https://doi.org/10.1016/j.ajem.2008.12.039
12 https://doi.org/10.1016/j.annemergmed.2004.09.012
13 https://doi.org/10.1016/j.annemergmed.2005.11.019
14 https://doi.org/10.1016/j.annemergmed.2014.04.014
15 https://doi.org/10.1016/j.ccl.2012.10.003
16 https://doi.org/10.1016/j.ejor.2003.10.013
17 https://doi.org/10.1016/j.ejor.2006.02.054
18 https://doi.org/10.1016/j.ejor.2011.10.010
19 https://doi.org/10.1016/j.eswa.2004.12.008
20 https://doi.org/10.1016/j.eswa.2008.09.019
21 https://doi.org/10.1016/j.eswa.2011.08.074
22 https://doi.org/10.1016/j.healthpol.2010.01.005
23 https://doi.org/10.1016/j.healthpol.2013.09.005
24 https://doi.org/10.1016/j.healthpol.2015.12.003
25 https://doi.org/10.1016/j.ijmedinf.2006.01.005
26 https://doi.org/10.1016/j.ijmedinf.2011.08.001
27 https://doi.org/10.1016/j.jacc.2007.08.059
28 https://doi.org/10.1016/s0002-9343(98)00054-0
29 https://doi.org/10.1016/s0047-2727(02)00216-5
30 https://doi.org/10.1016/s0168-8510(00)00092-0
31 https://doi.org/10.1016/s0168-8510(03)00023-x
32 https://doi.org/10.1016/s0196-0644(03)00823-0
33 https://doi.org/10.1016/s0305-0548(96)00088-3
34 https://doi.org/10.1016/s0925-2312(03)00372-2
35 https://doi.org/10.1016/s1386-5056(00)00065-4
36 https://doi.org/10.1016/s1386-5056(01)00174-5
37 https://doi.org/10.1017/s0266462300103186
38 https://doi.org/10.1067/mem.2002.129171
39 https://doi.org/10.1093/eurheartj/ehv378
40 https://doi.org/10.1093/europace/euw336
41 https://doi.org/10.1093/intqhc/7.3.219
42 https://doi.org/10.1097/mej.0b013e3282fce7af
43 https://doi.org/10.1109/5.58325
44 https://doi.org/10.1111/j.1540-5915.1992.tb00425.x
45 https://doi.org/10.1111/j.1540-5915.1993.tb00491.x
46 https://doi.org/10.1111/j.1553-2712.2011.01120.x
47 https://doi.org/10.1136/hrt.2008.143123
48 https://doi.org/10.1504/ijbpm.2008.016636
49 https://doi.org/10.15171/ijhpm.2018.13
50 schema:datePublished 2019-03
51 schema:datePublishedReg 2019-03-01
52 schema:description Emergency departments are characterized by the need for quick diagnosis under pressure. To select the most appropriate treatment, a series of rules to support decision-making has been offered by scientific societies. The effectiveness of these rules affects the appropriateness of treatment and the hospitalization of patients. Analyzing a sample of 1844 patients and focusing on the decision to hospitalize a patient after a syncope event to prevent severe short-term outcomes, this work proposes a new algorithm based on neural networks. Artificial neural networks are a non-parametric technique with the well-known ability to generalize behaviors, and they can thus predict severe short-term outcomes with pre-selected levels of sensitivity and specificity. This innovative technique can outperform the traditional models, since it does not require a specific functional form, i.e., the data are not supposed to be distributed following a specific design. Based on our results, the innovative model can predict hospitalization with a sensitivity of 100% and a specificity of 79%, significantly increasing the appropriateness of medical treatment and, as a result, hospital efficiency. According to Garson's Indexes, the most significant variables are exertion, the absence of symptoms, and the patient's gender. On the contrary, cardio-vascular history, hypertension, and age have the lowest impact on the determination of the subject's health status. The main application of this new technology is the adoption of smart solutions (e.g., a mobile app) to customize the stratification of patients admitted to emergency departments (ED)s after a syncope event. Indeed, the adoption of these smart solutions gives the opportunity to customize risk stratification according to the specific clinical case (i.e., the patient's health status) and the physician's decision-making process (i.e., the desired levels of sensitivity and specificity). Moreover, a decision-making process based on these smart solutions might ensure a more effective use of available resources, improving the management of syncope patients and reducing the cost of inappropriate treatment and hospitalization.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N5484856f86d04c57b61a895339198382
57 Nfd971671c7ee464abc034065f47435c0
58 sg:journal.1295016
59 schema:name Artificial neural networks and risk stratification in emergency departments
60 schema:pagination 291-299
61 schema:productId N32f5d6a1134a426aa22b98b2f17fc65b
62 N37b4644dcb9a4086b6ccbbb5e2a3b498
63 N67168a57f13e4e7c8c41d500361cd7be
64 N89297a1a5a3941149aa97199c8753f6d
65 Nf8e8d9ed8b9d451ab354634dc94eb231
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107802445
67 https://doi.org/10.1007/s11739-018-1971-2
68 schema:sdDatePublished 2019-04-11T10:15
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nbba5233f475c445fb980a50aa4003f2d
71 schema:url https://link.springer.com/10.1007%2Fs11739-018-1971-2
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N2a97488ab11649da984f578f1b9b696b rdf:first sg:person.014575004662.56
76 rdf:rest N350948dbc469488b85251b384e80786b
77 N32f5d6a1134a426aa22b98b2f17fc65b schema:name pubmed_id
78 schema:value 30353271
79 rdf:type schema:PropertyValue
80 N350948dbc469488b85251b384e80786b rdf:first sg:person.01110631213.39
81 rdf:rest Nb3cb9c982e9240ca85950c276dbd0a6d
82 N37b4644dcb9a4086b6ccbbb5e2a3b498 schema:name dimensions_id
83 schema:value pub.1107802445
84 rdf:type schema:PropertyValue
85 N5484856f86d04c57b61a895339198382 schema:issueNumber 2
86 rdf:type schema:PublicationIssue
87 N5bf0c7f1d2a146d8ba012e613b890114 rdf:first sg:person.013736020156.95
88 rdf:rest Nf5ff223fc2544da1a7699cf925f15aca
89 N67168a57f13e4e7c8c41d500361cd7be schema:name readcube_id
90 schema:value dc503f4d5f20bc8ecf10c9de03e1c4bb20fb20a68708ecc81deb3191f8c1b8c3
91 rdf:type schema:PropertyValue
92 N8355e32af35540ab9211f512f142bce1 rdf:first sg:person.0712265673.74
93 rdf:rest N2a97488ab11649da984f578f1b9b696b
94 N89297a1a5a3941149aa97199c8753f6d schema:name doi
95 schema:value 10.1007/s11739-018-1971-2
96 rdf:type schema:PropertyValue
97 Nb3cb9c982e9240ca85950c276dbd0a6d rdf:first sg:person.01360246441.82
98 rdf:rest rdf:nil
99 Nbba5233f475c445fb980a50aa4003f2d schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Ndb51423a42c24c0f9d974aef0e115be5 schema:name CNR-IRCrES, Research Institute on Sustainable Economic Growth, Moncalieri, Italy
102 rdf:type schema:Organization
103 Nf5ff223fc2544da1a7699cf925f15aca rdf:first sg:person.0705265632.81
104 rdf:rest N8355e32af35540ab9211f512f142bce1
105 Nf8e8d9ed8b9d451ab354634dc94eb231 schema:name nlm_unique_id
106 schema:value 101263418
107 rdf:type schema:PropertyValue
108 Nfd971671c7ee464abc034065f47435c0 schema:volumeNumber 14
109 rdf:type schema:PublicationVolume
110 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
111 schema:name Medical and Health Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
114 schema:name Public Health and Health Services
115 rdf:type schema:DefinedTerm
116 sg:journal.1295016 schema:issn 1828-0447
117 1970-9366
118 schema:name Internal and Emergency Medicine
119 rdf:type schema:Periodical
120 sg:person.01110631213.39 schema:affiliation https://www.grid.ac/institutes/grid.24704.35
121 schema:familyName Ungar
122 schema:givenName Andrea
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110631213.39
124 rdf:type schema:Person
125 sg:person.01360246441.82 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
126 schema:familyName Ippoliti
127 schema:givenName Roberto
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360246441.82
129 rdf:type schema:Person
130 sg:person.013736020156.95 schema:affiliation Ndb51423a42c24c0f9d974aef0e115be5
131 schema:familyName Falavigna
132 schema:givenName Greta
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736020156.95
134 rdf:type schema:Person
135 sg:person.014575004662.56 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
136 schema:familyName Quinn
137 schema:givenName James V.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575004662.56
139 rdf:type schema:Person
140 sg:person.0705265632.81 schema:affiliation https://www.grid.ac/institutes/grid.414818.0
141 schema:familyName Costantino
142 schema:givenName Giorgio
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705265632.81
144 rdf:type schema:Person
145 sg:person.0712265673.74 schema:affiliation https://www.grid.ac/institutes/grid.417728.f
146 schema:familyName Furlan
147 schema:givenName Raffaello
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712265673.74
149 rdf:type schema:Person
150 sg:pub.10.1007/s10198-014-0619-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049220108
151 https://doi.org/10.1007/s10198-014-0619-z
152 rdf:type schema:CreativeWork
153 sg:pub.10.1023/a:1008668718837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023647063
154 https://doi.org/10.1023/a:1008668718837
155 rdf:type schema:CreativeWork
156 sg:pub.10.1046/j.1525-1497.2002.10750.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017755591
157 https://doi.org/10.1046/j.1525-1497.2002.10750.x
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/hec.1560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019964932
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/hpm.2591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105872127
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/hyp.8044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036372206
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ajem.2008.12.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020188012
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.annemergmed.2004.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018207248
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.annemergmed.2005.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029445193
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.annemergmed.2014.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044269890
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ccl.2012.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024081230
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ejor.2003.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045615752
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ejor.2006.02.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029680339
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.ejor.2011.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039480609
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.eswa.2004.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023604771
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.eswa.2008.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030855132
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.eswa.2011.08.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039154450
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.healthpol.2010.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005016751
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.healthpol.2013.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023656404
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.healthpol.2015.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011761201
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.ijmedinf.2006.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033540132
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.ijmedinf.2011.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027773177
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jacc.2007.08.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039507981
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s0002-9343(98)00054-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007744655
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s0047-2727(02)00216-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004301479
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0168-8510(00)00092-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039437914
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/s0168-8510(03)00023-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032968488
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0196-0644(03)00823-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014401886
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s0305-0548(96)00088-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025953808
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0925-2312(03)00372-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038911658
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s1386-5056(00)00065-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048716202
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s1386-5056(01)00174-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006791720
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1017/s0266462300103186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048671758
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1067/mem.2002.129171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041839936
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/eurheartj/ehv378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059576659
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/europace/euw336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059578015
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/intqhc/7.3.219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059712950
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1097/mej.0b013e3282fce7af schema:sameAs https://app.dimensions.ai/details/publication/pub.1041564394
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1109/5.58325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179721
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1111/j.1540-5915.1992.tb00425.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038988524
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1111/j.1540-5915.1993.tb00491.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017942566
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1111/j.1553-2712.2011.01120.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033056719
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1136/hrt.2008.143123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053082030
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1504/ijbpm.2008.016636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067438850
242 rdf:type schema:CreativeWork
243 https://doi.org/10.15171/ijhpm.2018.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105302688
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
246 schema:name Division of Emergency Medicine, Stanford University, Stanford, CA, USA
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.24704.35 schema:alternateName Azienda Ospedaliero-Universitaria Careggi
249 schema:name Syncope Unit, Geriatric Medicine and Cardiology, Careggi University Hospital, Florence, Italy
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.414818.0 schema:alternateName Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
252 schema:name Clinical Medicine Department, Fondazione IRCCS, Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.417728.f schema:alternateName Humanitas Research Hospital
255 schema:name Department of Biomedical Sciences, Humanitas University, Humanitas Research Hospital, Rozzano, Italy
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.7605.4 schema:alternateName University of Turin
258 schema:name Department of Management, University of Turin, Turin, Italy
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...