Clinical outcomes in patients with acute hemodynamic collapse supported by extracorporeal life support View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09-24

AUTHORS

Toshiharu Fujii, Hirofumi Nagamatsu, Masataka Nakano, Yohei Ohno, Gaku Nakazawa, Norihiko Shinozaki, Fuminobu Yoshimachi, Yuji Ikari

ABSTRACT

Although extracorporeal life support (ECLS) is utilized for acute hemodynamic collapse, clinical outcomes for such patients are uncertain. The present study examined 30-day clinical outcomes in patients treated with ECLS for acute hemodynamic collapse, and determined the factors associated with 30-day mortality in patients who required ECLS for cardiopulmonary arrest (CPA). A total of 200 patients, in whom emergency ECLS was utilized for acute hemodynamic collapse from 2006 to 2015, were analyzed retrospectively. The impact of CPA on all-cause 30-day death in the overall population was examined by multivariable logistic regression analysis; comparisons were made between 30-day survivors (n = 78) and non-survivors (n = 122). In addition, clinical factors associated with 30-day survival for patients in whom ECLS was utilized for CPA (n = 139) were examined. All-cause 30-day mortality in the overall study population was 61 % (122/200). CPA was the most common cause of ECLS requirement (70 %), and the factor associated strongest with death at 30-days (OR 3.31, 95 % CI 1.75–6.36, P < 0.01). Witnessed CPA with bystander cardiopulmonary resuscitation (CPR) (OR 4.33, 95 % CI 1.08–29.1, P = 0.04) and a less than 40 min interval between CPA and ECLS (OR 3.49, 95 % CI 1.39–9.02, P < 0.01) were suggested as factors associated with 30-day survival in CPA patients. CPA as a trigger of ECLS was a strong contributor to 30-day death in patients in whom emergency ECLS was utilized. However, witnessed CPA with bystander CPR and a less than 40 min interval from CPA to start of ECLS were suggested as factors associated with survival in these CPA patients. More... »

PAGES

1207-1214

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11739-016-1542-3

DOI

http://dx.doi.org/10.1007/s11739-016-1542-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014113809

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27665579


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Extracorporeal Membrane Oxygenation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Arrest", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Outcome Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265061.6", 
          "name": [
            "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujii", 
        "givenName": "Toshiharu", 
        "id": "sg:person.0705626361.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705626361.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265061.6", 
          "name": [
            "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagamatsu", 
        "givenName": "Hirofumi", 
        "id": "sg:person.014675164445.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014675164445.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265061.6", 
          "name": [
            "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakano", 
        "givenName": "Masataka", 
        "id": "sg:person.01020302673.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020302673.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265061.6", 
          "name": [
            "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohno", 
        "givenName": "Yohei", 
        "id": "sg:person.01042040454.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042040454.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265061.6", 
          "name": [
            "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakazawa", 
        "givenName": "Gaku", 
        "id": "sg:person.01050275451.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050275451.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265061.6", 
          "name": [
            "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shinozaki", 
        "givenName": "Norihiko", 
        "id": "sg:person.01224276440.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224276440.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265061.6", 
          "name": [
            "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshimachi", 
        "givenName": "Fuminobu", 
        "id": "sg:person.01361726361.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361726361.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265061.6", 
          "name": [
            "Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ikari", 
        "givenName": "Yuji", 
        "id": "sg:person.01230000060.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230000060.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00392-013-0580-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045296779", 
          "https://doi.org/10.1007/s00392-013-0580-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13054-014-0535-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030838954", 
          "https://doi.org/10.1186/s13054-014-0535-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09-24", 
    "datePublishedReg": "2016-09-24", 
    "description": "Although extracorporeal life support (ECLS) is utilized for acute hemodynamic collapse, clinical outcomes for such patients are uncertain. The present study examined 30-day clinical outcomes in patients treated with ECLS for acute hemodynamic collapse, and determined the factors associated with 30-day mortality in patients who required ECLS for cardiopulmonary arrest (CPA). A total of 200 patients, in whom emergency ECLS was utilized for acute hemodynamic collapse from 2006 to 2015, were analyzed retrospectively. The impact of CPA on all-cause 30-day death in the overall population was examined by multivariable logistic regression analysis; comparisons were made between 30-day survivors (n\u00a0=\u00a078) and non-survivors (n\u00a0=\u00a0122). In addition, clinical factors associated with 30-day survival for patients in whom ECLS was utilized for CPA (n\u00a0=\u00a0139) were examined. All-cause 30-day mortality in the overall study population was 61\u00a0% (122/200). CPA was the most common cause of ECLS requirement (70\u00a0%), and the factor associated strongest with death at 30-days (OR 3.31, 95\u00a0% CI 1.75\u20136.36, P\u00a0<\u00a00.01). Witnessed CPA with bystander cardiopulmonary resuscitation (CPR) (OR 4.33, 95\u00a0% CI 1.08\u201329.1, P\u00a0=\u00a00.04) and a less than 40\u00a0min interval between CPA and ECLS (OR 3.49, 95\u00a0% CI 1.39\u20139.02, P\u00a0<\u00a00.01) were suggested as factors associated with 30-day survival in CPA patients. CPA as a trigger of ECLS was a strong contributor to 30-day death in patients in whom emergency ECLS was utilized. However, witnessed CPA with bystander CPR and a less than 40\u00a0min interval from CPA to start of ECLS were suggested as factors associated with survival in these CPA patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11739-016-1542-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295016", 
        "issn": [
          "1828-0447", 
          "1970-9366"
        ], 
        "name": "Internal and Emergency Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "extracorporeal life support", 
      "acute hemodynamic collapse", 
      "emergency extracorporeal life support", 
      "cardiopulmonary arrest", 
      "hemodynamic collapse", 
      "bystander cardiopulmonary resuscitation", 
      "clinical outcomes", 
      "cardiopulmonary resuscitation", 
      "CPA patients", 
      "multivariable logistic regression analysis", 
      "life support", 
      "overall study population", 
      "logistic regression analysis", 
      "min intervals", 
      "such patients", 
      "clinical factors", 
      "common cause", 
      "study population", 
      "patients", 
      "overall population", 
      "death", 
      "regression analysis", 
      "survival", 
      "outcomes", 
      "mortality", 
      "present study", 
      "cause", 
      "factors", 
      "resuscitation", 
      "population", 
      "strong contributor", 
      "survivors", 
      "interval", 
      "arrest", 
      "total", 
      "triggers", 
      "support", 
      "study", 
      "contributor", 
      "addition", 
      "impact", 
      "comparison", 
      "analysis", 
      "collapse", 
      "requirements"
    ], 
    "name": "Clinical outcomes in patients with acute hemodynamic collapse supported by extracorporeal life support", 
    "pagination": "1207-1214", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014113809"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11739-016-1542-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27665579"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11739-016-1542-3", 
      "https://app.dimensions.ai/details/publication/pub.1014113809"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_705.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11739-016-1542-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11739-016-1542-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11739-016-1542-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11739-016-1542-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11739-016-1542-3'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      86 URIs      76 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11739-016-1542-3 schema:about N0f251fb14680452cabd9773fa62a7b11
2 N27e5e54ce8d24cd9811bd2744cfe3478
3 N4e88f01081614f52bf6cf4d9ba043069
4 N52798e1b198e4746bfe4718b74ebc8c0
5 N678ce751db584a5ca2df5b8915610849
6 N71e2038545eb48c1bfa641c9b58885fd
7 Na2a612beec474f8a99d1001cc07c417e
8 Nae87403f118140de93d6518ac28ffbc1
9 Nb7aaf39a73de45eeb1cf68a56337a11e
10 Nbbdb44c386f34631b0bf0499d91066ff
11 Ne3e1abf1055d418aa5e13eb38ce3f7c4
12 Nee57ad3bd5cc45a7a8146f760c117374
13 Nf156e957b0284780967929db5b8e0e2e
14 Nf9c2b5f9ef6d4b1aa3763552f647ee67
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author Naf71172bc67e4e4683185b1162692134
18 schema:citation sg:pub.10.1007/s00392-013-0580-3
19 sg:pub.10.1186/s13054-014-0535-8
20 schema:datePublished 2016-09-24
21 schema:datePublishedReg 2016-09-24
22 schema:description Although extracorporeal life support (ECLS) is utilized for acute hemodynamic collapse, clinical outcomes for such patients are uncertain. The present study examined 30-day clinical outcomes in patients treated with ECLS for acute hemodynamic collapse, and determined the factors associated with 30-day mortality in patients who required ECLS for cardiopulmonary arrest (CPA). A total of 200 patients, in whom emergency ECLS was utilized for acute hemodynamic collapse from 2006 to 2015, were analyzed retrospectively. The impact of CPA on all-cause 30-day death in the overall population was examined by multivariable logistic regression analysis; comparisons were made between 30-day survivors (n = 78) and non-survivors (n = 122). In addition, clinical factors associated with 30-day survival for patients in whom ECLS was utilized for CPA (n = 139) were examined. All-cause 30-day mortality in the overall study population was 61 % (122/200). CPA was the most common cause of ECLS requirement (70 %), and the factor associated strongest with death at 30-days (OR 3.31, 95 % CI 1.75–6.36, P < 0.01). Witnessed CPA with bystander cardiopulmonary resuscitation (CPR) (OR 4.33, 95 % CI 1.08–29.1, P = 0.04) and a less than 40 min interval between CPA and ECLS (OR 3.49, 95 % CI 1.39–9.02, P < 0.01) were suggested as factors associated with 30-day survival in CPA patients. CPA as a trigger of ECLS was a strong contributor to 30-day death in patients in whom emergency ECLS was utilized. However, witnessed CPA with bystander CPR and a less than 40 min interval from CPA to start of ECLS were suggested as factors associated with survival in these CPA patients.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf Ndfdf0d18dd7b4fe783dec567015462d1
26 Nfa10b34f0a694ccc945a72254f0333fe
27 sg:journal.1295016
28 schema:keywords CPA patients
29 acute hemodynamic collapse
30 addition
31 analysis
32 arrest
33 bystander cardiopulmonary resuscitation
34 cardiopulmonary arrest
35 cardiopulmonary resuscitation
36 cause
37 clinical factors
38 clinical outcomes
39 collapse
40 common cause
41 comparison
42 contributor
43 death
44 emergency extracorporeal life support
45 extracorporeal life support
46 factors
47 hemodynamic collapse
48 impact
49 interval
50 life support
51 logistic regression analysis
52 min intervals
53 mortality
54 multivariable logistic regression analysis
55 outcomes
56 overall population
57 overall study population
58 patients
59 population
60 present study
61 regression analysis
62 requirements
63 resuscitation
64 strong contributor
65 study
66 study population
67 such patients
68 support
69 survival
70 survivors
71 total
72 triggers
73 schema:name Clinical outcomes in patients with acute hemodynamic collapse supported by extracorporeal life support
74 schema:pagination 1207-1214
75 schema:productId N005435e8388940f6a3a73e9c6f8cae43
76 N4621ae744a7a4f31828abb6be6fd9425
77 N5843299e1afc49f394bf91bcb53ea934
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014113809
79 https://doi.org/10.1007/s11739-016-1542-3
80 schema:sdDatePublished 2022-09-02T16:00
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N0c66482527634ed4994e1285c90bc685
83 schema:url https://doi.org/10.1007/s11739-016-1542-3
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N005435e8388940f6a3a73e9c6f8cae43 schema:name dimensions_id
88 schema:value pub.1014113809
89 rdf:type schema:PropertyValue
90 N0c66482527634ed4994e1285c90bc685 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N0f251fb14680452cabd9773fa62a7b11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Survival Analysis
94 rdf:type schema:DefinedTerm
95 N14df27fb739340a2a142e4d0be1a1a92 rdf:first sg:person.01230000060.40
96 rdf:rest rdf:nil
97 N27e5e54ce8d24cd9811bd2744cfe3478 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Male
99 rdf:type schema:DefinedTerm
100 N4621ae744a7a4f31828abb6be6fd9425 schema:name pubmed_id
101 schema:value 27665579
102 rdf:type schema:PropertyValue
103 N4e88f01081614f52bf6cf4d9ba043069 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Extracorporeal Membrane Oxygenation
105 rdf:type schema:DefinedTerm
106 N52798e1b198e4746bfe4718b74ebc8c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Middle Aged
108 rdf:type schema:DefinedTerm
109 N5843299e1afc49f394bf91bcb53ea934 schema:name doi
110 schema:value 10.1007/s11739-016-1542-3
111 rdf:type schema:PropertyValue
112 N5f794f9e18844c72b57c48bdb5437331 rdf:first sg:person.01050275451.86
113 rdf:rest Necee76da45d4434ea8fe76bb55023575
114 N678ce751db584a5ca2df5b8915610849 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Chi-Square Distribution
116 rdf:type schema:DefinedTerm
117 N71e2038545eb48c1bfa641c9b58885fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Time Factors
119 rdf:type schema:DefinedTerm
120 Na2a612beec474f8a99d1001cc07c417e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Patient Outcome Assessment
122 rdf:type schema:DefinedTerm
123 Na61a76b614e64656ae81cb6709eaed5a rdf:first sg:person.01020302673.22
124 rdf:rest Nc7673c6a10874905a980a69f871c6ce3
125 Nac45df0ae4b1423385b5a33816b3658b rdf:first sg:person.014675164445.81
126 rdf:rest Na61a76b614e64656ae81cb6709eaed5a
127 Nae87403f118140de93d6518ac28ffbc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Humans
129 rdf:type schema:DefinedTerm
130 Naf71172bc67e4e4683185b1162692134 rdf:first sg:person.0705626361.00
131 rdf:rest Nac45df0ae4b1423385b5a33816b3658b
132 Nb7aaf39a73de45eeb1cf68a56337a11e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Heart Arrest
134 rdf:type schema:DefinedTerm
135 Nbbdb44c386f34631b0bf0499d91066ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Logistic Models
137 rdf:type schema:DefinedTerm
138 Nc7673c6a10874905a980a69f871c6ce3 rdf:first sg:person.01042040454.15
139 rdf:rest N5f794f9e18844c72b57c48bdb5437331
140 Ndd5614164eea48b48308ce2c29a477dd rdf:first sg:person.01361726361.53
141 rdf:rest N14df27fb739340a2a142e4d0be1a1a92
142 Ndfdf0d18dd7b4fe783dec567015462d1 schema:volumeNumber 12
143 rdf:type schema:PublicationVolume
144 Ne3e1abf1055d418aa5e13eb38ce3f7c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Retrospective Studies
146 rdf:type schema:DefinedTerm
147 Necee76da45d4434ea8fe76bb55023575 rdf:first sg:person.01224276440.03
148 rdf:rest Ndd5614164eea48b48308ce2c29a477dd
149 Nee57ad3bd5cc45a7a8146f760c117374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Aged
151 rdf:type schema:DefinedTerm
152 Nf156e957b0284780967929db5b8e0e2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Risk Factors
154 rdf:type schema:DefinedTerm
155 Nf9c2b5f9ef6d4b1aa3763552f647ee67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Female
157 rdf:type schema:DefinedTerm
158 Nfa10b34f0a694ccc945a72254f0333fe schema:issueNumber 8
159 rdf:type schema:PublicationIssue
160 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
161 schema:name Medical and Health Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
164 schema:name Clinical Sciences
165 rdf:type schema:DefinedTerm
166 sg:journal.1295016 schema:issn 1828-0447
167 1970-9366
168 schema:name Internal and Emergency Medicine
169 schema:publisher Springer Nature
170 rdf:type schema:Periodical
171 sg:person.01020302673.22 schema:affiliation grid-institutes:grid.265061.6
172 schema:familyName Nakano
173 schema:givenName Masataka
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020302673.22
175 rdf:type schema:Person
176 sg:person.01042040454.15 schema:affiliation grid-institutes:grid.265061.6
177 schema:familyName Ohno
178 schema:givenName Yohei
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042040454.15
180 rdf:type schema:Person
181 sg:person.01050275451.86 schema:affiliation grid-institutes:grid.265061.6
182 schema:familyName Nakazawa
183 schema:givenName Gaku
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050275451.86
185 rdf:type schema:Person
186 sg:person.01224276440.03 schema:affiliation grid-institutes:grid.265061.6
187 schema:familyName Shinozaki
188 schema:givenName Norihiko
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224276440.03
190 rdf:type schema:Person
191 sg:person.01230000060.40 schema:affiliation grid-institutes:grid.265061.6
192 schema:familyName Ikari
193 schema:givenName Yuji
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230000060.40
195 rdf:type schema:Person
196 sg:person.01361726361.53 schema:affiliation grid-institutes:grid.265061.6
197 schema:familyName Yoshimachi
198 schema:givenName Fuminobu
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361726361.53
200 rdf:type schema:Person
201 sg:person.014675164445.81 schema:affiliation grid-institutes:grid.265061.6
202 schema:familyName Nagamatsu
203 schema:givenName Hirofumi
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014675164445.81
205 rdf:type schema:Person
206 sg:person.0705626361.00 schema:affiliation grid-institutes:grid.265061.6
207 schema:familyName Fujii
208 schema:givenName Toshiharu
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705626361.00
210 rdf:type schema:Person
211 sg:pub.10.1007/s00392-013-0580-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045296779
212 https://doi.org/10.1007/s00392-013-0580-3
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/s13054-014-0535-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030838954
215 https://doi.org/10.1186/s13054-014-0535-8
216 rdf:type schema:CreativeWork
217 grid-institutes:grid.265061.6 schema:alternateName Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan
218 schema:name Division of Cardiology, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Japan
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...