A cooperative particle swarm optimizer with migration of heterogeneous probabilistic models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-03

AUTHORS

Mohammed El-Abd, Mohamed S. Kamel

ABSTRACT

Particle Swarm Optimization (PSO) is a stochastic optimization approach that originated from simulations of bird flocking, and that has been successfully used in many applications as an optimization tool. Estimation of distribution algorithms (EDAs) are a class of evolutionary algorithms which perform a two-step process: building a probabilistic model from which good solutions may be generated and then using this model to generate new individuals. Two distinct research trends that emerged in the past few years are the hybridization of PSO and EDA algorithms and the parallelization of EDAs to exploit the idea of exchanging the probabilistic model information. In this work, we propose the use of a cooperative PSO/EDA algorithm based on the exchange of heterogeneous probabilistic models. The model is heterogeneous because the cooperating PSO/EDA algorithms use different methods to sample the search space. Three different exchange approaches are tested and compared in this work. In all these approaches, the amount of information exchanged is adapted based on the performance of the two cooperating swarms. The performance of the cooperative model is compared to the existing state-of-the-art PSO cooperative approaches using a suite of well-known benchmark optimization functions. More... »

PAGES

57-89

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11721-009-0037-5

DOI

http://dx.doi.org/10.1007/s11721-009-0037-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006399381


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "ECE Department, University of Waterloo, 200 University Av. W., N2L3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Abd", 
        "givenName": "Mohammed", 
        "id": "sg:person.012624741767.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012624741767.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "ECE Department, University of Waterloo, 200 University Av. W., N2L3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.01133760566.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.06.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010839233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpdc.2006.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015504102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-32494-1_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016391045", 
          "https://doi.org/10.1007/3-540-32494-1_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1068009.1068045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021051285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30217-9_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023453989", 
          "https://doi.org/10.1007/978-3-540-30217-9_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30217-9_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023453989", 
          "https://doi.org/10.1007/978-3-540-30217-9_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24669-5_71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024980805", 
          "https://doi.org/10.1007/978-3-540-24669-5_71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco.1997.5.3.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026691552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45105-6_112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029617980", 
          "https://doi.org/10.1007/3-540-45105-6_112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-33416-5_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030305707", 
          "https://doi.org/10.1007/0-387-33416-5_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11721-009-0026-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031985424", 
          "https://doi.org/10.1007/s11721-009-0026-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11721-009-0026-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031985424", 
          "https://doi.org/10.1007/s11721-009-0026-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11839088_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032111226", 
          "https://doi.org/10.1007/11839088_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0026596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035772254", 
          "https://doi.org/10.1007/bfb0026596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0056884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044408817", 
          "https://doi.org/10.1007/bfb0056884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1276958.1277091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046723694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1143997.1144071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048715384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2004.826069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5019/j.ijcir.2008.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072559020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2002.1004493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093574462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1995.488968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093669333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2005.1554905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093688491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2007.4425096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094017689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2007.4424587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094749636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2005.1554727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095784704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sis.2005.1501611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095791179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470612163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470612163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661974"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03", 
    "datePublishedReg": "2010-03-01", 
    "description": "Particle Swarm Optimization (PSO) is a stochastic optimization approach that originated from simulations of bird flocking, and that has been successfully used in many applications as an optimization tool. Estimation of distribution algorithms (EDAs) are a class of evolutionary algorithms which perform a two-step process: building a probabilistic model from which good solutions may be generated and then using this model to generate new individuals. Two distinct research trends that emerged in the past few years are the hybridization of PSO and EDA algorithms and the parallelization of EDAs to exploit the idea of exchanging the probabilistic model information. In this work, we propose the use of a cooperative PSO/EDA algorithm based on the exchange of heterogeneous probabilistic models. The model is heterogeneous because the cooperating PSO/EDA algorithms use different methods to sample the search space. Three different exchange approaches are tested and compared in this work. In all these approaches, the amount of information exchanged is adapted based on the performance of the two cooperating swarms. The performance of the cooperative model is compared to the existing state-of-the-art PSO cooperative approaches using a suite of well-known benchmark optimization functions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11721-009-0037-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136777", 
        "issn": [
          "1935-3812", 
          "1935-3820"
        ], 
        "name": "Swarm Intelligence", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "A cooperative particle swarm optimizer with migration of heterogeneous probabilistic models", 
    "pagination": "57-89", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e7b8bb361380664b4538d9b25f851c784e5b7895a5af8b73a6da99c7d193431"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11721-009-0037-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006399381"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11721-009-0037-5", 
      "https://app.dimensions.ai/details/publication/pub.1006399381"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99832_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11721-009-0037-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11721-009-0037-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11721-009-0037-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11721-009-0037-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11721-009-0037-5'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11721-009-0037-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nef61ef0eb3a64a6c9f35f30c3e112f85
4 schema:citation sg:pub.10.1007/0-387-33416-5_8
5 sg:pub.10.1007/11839088_7
6 sg:pub.10.1007/3-540-32494-1_7
7 sg:pub.10.1007/3-540-45105-6_112
8 sg:pub.10.1007/978-3-540-24669-5_71
9 sg:pub.10.1007/978-3-540-30217-9_25
10 sg:pub.10.1007/bfb0026596
11 sg:pub.10.1007/bfb0056884
12 sg:pub.10.1007/s11721-009-0026-8
13 https://doi.org/10.1002/9780470612163
14 https://doi.org/10.1016/j.ejor.2006.06.046
15 https://doi.org/10.1016/j.jpdc.2006.03.005
16 https://doi.org/10.1109/cec.2002.1004493
17 https://doi.org/10.1109/cec.2005.1554727
18 https://doi.org/10.1109/cec.2005.1554905
19 https://doi.org/10.1109/cec.2007.4424587
20 https://doi.org/10.1109/cec.2007.4425096
21 https://doi.org/10.1109/icnn.1995.488968
22 https://doi.org/10.1109/sis.2005.1501611
23 https://doi.org/10.1109/tevc.2004.826069
24 https://doi.org/10.1145/1068009.1068045
25 https://doi.org/10.1145/1143997.1144071
26 https://doi.org/10.1145/1276958.1277091
27 https://doi.org/10.1162/evco.1997.5.3.303
28 https://doi.org/10.5019/j.ijcir.2008.133
29 schema:datePublished 2010-03
30 schema:datePublishedReg 2010-03-01
31 schema:description Particle Swarm Optimization (PSO) is a stochastic optimization approach that originated from simulations of bird flocking, and that has been successfully used in many applications as an optimization tool. Estimation of distribution algorithms (EDAs) are a class of evolutionary algorithms which perform a two-step process: building a probabilistic model from which good solutions may be generated and then using this model to generate new individuals. Two distinct research trends that emerged in the past few years are the hybridization of PSO and EDA algorithms and the parallelization of EDAs to exploit the idea of exchanging the probabilistic model information. In this work, we propose the use of a cooperative PSO/EDA algorithm based on the exchange of heterogeneous probabilistic models. The model is heterogeneous because the cooperating PSO/EDA algorithms use different methods to sample the search space. Three different exchange approaches are tested and compared in this work. In all these approaches, the amount of information exchanged is adapted based on the performance of the two cooperating swarms. The performance of the cooperative model is compared to the existing state-of-the-art PSO cooperative approaches using a suite of well-known benchmark optimization functions.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N4673c951158e41c88d3f4a737779a26e
36 N8c6d7354994d42d481567226b9ac5286
37 sg:journal.1136777
38 schema:name A cooperative particle swarm optimizer with migration of heterogeneous probabilistic models
39 schema:pagination 57-89
40 schema:productId N0548b3688fb24ee78eb13edf32b3c117
41 N17ed80dfe1244b15b4615dc949dd6f0f
42 N3f80f1e51da14d7db3b4dd2a1904535b
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006399381
44 https://doi.org/10.1007/s11721-009-0037-5
45 schema:sdDatePublished 2019-04-11T09:37
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N0fe37430967e492da06f3c1723fee50a
48 schema:url http://link.springer.com/10.1007%2Fs11721-009-0037-5
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0548b3688fb24ee78eb13edf32b3c117 schema:name dimensions_id
53 schema:value pub.1006399381
54 rdf:type schema:PropertyValue
55 N0fe37430967e492da06f3c1723fee50a schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N17ed80dfe1244b15b4615dc949dd6f0f schema:name readcube_id
58 schema:value 1e7b8bb361380664b4538d9b25f851c784e5b7895a5af8b73a6da99c7d193431
59 rdf:type schema:PropertyValue
60 N3f80f1e51da14d7db3b4dd2a1904535b schema:name doi
61 schema:value 10.1007/s11721-009-0037-5
62 rdf:type schema:PropertyValue
63 N4673c951158e41c88d3f4a737779a26e schema:volumeNumber 4
64 rdf:type schema:PublicationVolume
65 N8c6d7354994d42d481567226b9ac5286 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 Nac526664ab60466c9f5a134272d8b106 rdf:first sg:person.01133760566.26
68 rdf:rest rdf:nil
69 Nef61ef0eb3a64a6c9f35f30c3e112f85 rdf:first sg:person.012624741767.49
70 rdf:rest Nac526664ab60466c9f5a134272d8b106
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:journal.1136777 schema:issn 1935-3812
78 1935-3820
79 schema:name Swarm Intelligence
80 rdf:type schema:Periodical
81 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
82 schema:familyName Kamel
83 schema:givenName Mohamed S.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
85 rdf:type schema:Person
86 sg:person.012624741767.49 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
87 schema:familyName El-Abd
88 schema:givenName Mohammed
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012624741767.49
90 rdf:type schema:Person
91 sg:pub.10.1007/0-387-33416-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030305707
92 https://doi.org/10.1007/0-387-33416-5_8
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/11839088_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032111226
95 https://doi.org/10.1007/11839088_7
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/3-540-32494-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016391045
98 https://doi.org/10.1007/3-540-32494-1_7
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/3-540-45105-6_112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029617980
101 https://doi.org/10.1007/3-540-45105-6_112
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-540-24669-5_71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024980805
104 https://doi.org/10.1007/978-3-540-24669-5_71
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-540-30217-9_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023453989
107 https://doi.org/10.1007/978-3-540-30217-9_25
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bfb0026596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035772254
110 https://doi.org/10.1007/bfb0026596
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bfb0056884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044408817
113 https://doi.org/10.1007/bfb0056884
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11721-009-0026-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031985424
116 https://doi.org/10.1007/s11721-009-0026-8
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/9780470612163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661974
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ejor.2006.06.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010839233
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jpdc.2006.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015504102
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/cec.2002.1004493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093574462
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/cec.2005.1554727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095784704
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/cec.2005.1554905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093688491
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/cec.2007.4424587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094749636
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/cec.2007.4425096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094017689
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/sis.2005.1501611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095791179
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tevc.2004.826069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604624
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/1068009.1068045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021051285
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/1143997.1144071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048715384
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/1276958.1277091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046723694
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1162/evco.1997.5.3.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026691552
147 rdf:type schema:CreativeWork
148 https://doi.org/10.5019/j.ijcir.2008.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072559020
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
151 schema:name ECE Department, University of Waterloo, 200 University Av. W., N2L3G1, Waterloo, Ontario, Canada
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...