Flame-retardant properties of in situ sol-gel synthesized inorganic borosilicate/silicate polymer scaffold matrix comprising ionic liquid View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Kumar Sai Smaran, Rajashekar Badam, Raman Vedarajan, Noriyoshi Matsumi

ABSTRACT

This paper focuses on the superiority of organic-inorganic hybrid ion-gel electrolytes for lithium-ion batteries (LiBs) over commercial electrolytes, such as 1 M LiPF6 in 1:1 ethylene carbonate (EC): dimethyl carbonate (DMC) {1 M LiPF6-EC: DMC}, in terms of their flame susceptibility. These ion-gel electrolytes possess ionic liquid monomers, which are confined within the borosilicate or silicate matrices that are ideal for nonflammability. Naked flame tests confirm that the organic-inorganic hybrid electrolytes are less susceptible to flames, and these electrolytes do not suffer from a major loss in terms of weight. In addition, the hybrids are self-extinguishable. Therefore, these hybrids are only oxidized when subjected to a flame unlike other commercial electrolytes used in lithium-ion batteries. Supplementary analyses using differential scanning calorimetric studies reveal that the hybrids are glassy until the temperature reaches more than 100°C. The current results are consistent with previously published data on the organic-inorganic hybrids. More... »

PAGES

163-171

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11708-018-0554-2

DOI

http://dx.doi.org/10.1007/s11708-018-0554-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103492434


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ochanomizu University", 
          "id": "https://www.grid.ac/institutes/grid.412314.1", 
          "name": [
            "School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Ishikawa, Japan", 
            "Division of Chemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Ohtsuka, Bunkyo-ku, 112-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smaran", 
        "givenName": "Kumar Sai", 
        "id": "sg:person.014740523273.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740523273.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyota Technological Institute", 
          "id": "https://www.grid.ac/institutes/grid.265129.b", 
          "name": [
            "School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Ishikawa, Japan", 
            "Surface Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, 468-8511, Tempaku Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Badam", 
        "givenName": "Rajashekar", 
        "id": "sg:person.0624056443.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624056443.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.444515.5", 
          "name": [
            "School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Ishikawa, Japan", 
            "Centre for Fuel Cell Technology, International Advanced Research Center for Powder Metallurgy and New Materials, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vedarajan", 
        "givenName": "Raman", 
        "id": "sg:person.0671253026.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671253026.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.444515.5", 
          "name": [
            "School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Ishikawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumi", 
        "givenName": "Noriyoshi", 
        "id": "sg:person.015470712471.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015470712471.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2006.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004167491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/451652a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007137639", 
          "https://doi.org/10.1038/451652a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2136078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007790920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2136078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007790920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms151121080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008549002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.psep.2011.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009116065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.0121502jes", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011558806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/mex.2012.1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012132325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(02)00488-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015373519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(02)00488-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015373519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms15046488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015957339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2013.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016534271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2004.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016951294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/en6094682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017648400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2014.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018593712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja3091438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019126274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1353158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019390299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2013.05.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024965000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(03)00259-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026040087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(03)00259-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026040087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ta14217e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026335604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028300488", 
          "https://doi.org/10.1038/35104644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028300488", 
          "https://doi.org/10.1038/35104644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2007.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043268038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2009.04.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044234158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2012.02.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046833256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/celc.201500372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047323019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1246/cl.2004.1360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064489891"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "This paper focuses on the superiority of organic-inorganic hybrid ion-gel electrolytes for lithium-ion batteries (LiBs) over commercial electrolytes, such as 1 M LiPF6 in 1:1 ethylene carbonate (EC): dimethyl carbonate (DMC) {1 M LiPF6-EC: DMC}, in terms of their flame susceptibility. These ion-gel electrolytes possess ionic liquid monomers, which are confined within the borosilicate or silicate matrices that are ideal for nonflammability. Naked flame tests confirm that the organic-inorganic hybrid electrolytes are less susceptible to flames, and these electrolytes do not suffer from a major loss in terms of weight. In addition, the hybrids are self-extinguishable. Therefore, these hybrids are only oxidized when subjected to a flame unlike other commercial electrolytes used in lithium-ion batteries. Supplementary analyses using differential scanning calorimetric studies reveal that the hybrids are glassy until the temperature reaches more than 100\u00b0C. The current results are consistent with previously published data on the organic-inorganic hybrids.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11708-018-0554-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136510", 
        "issn": [
          "2095-1701", 
          "2095-1698"
        ], 
        "name": "Frontiers in Energy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Flame-retardant properties of in situ sol-gel synthesized inorganic borosilicate/silicate polymer scaffold matrix comprising ionic liquid", 
    "pagination": "163-171", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "96658caf76356ce0718cef1dd1f4da1c43ad6c7f12a47dd0ff6effcf520fe0ba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11708-018-0554-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103492434"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11708-018-0554-2", 
      "https://app.dimensions.ai/details/publication/pub.1103492434"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29204_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11708-018-0554-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11708-018-0554-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11708-018-0554-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11708-018-0554-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11708-018-0554-2'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11708-018-0554-2 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N106649fe44a1411d8630aa0e30c3cddc
4 schema:citation sg:pub.10.1038/35104644
5 sg:pub.10.1038/451652a
6 https://doi.org/10.1002/celc.201500372
7 https://doi.org/10.1016/j.ijhydene.2013.05.124
8 https://doi.org/10.1016/j.jpowsour.2004.02.020
9 https://doi.org/10.1016/j.jpowsour.2006.10.013
10 https://doi.org/10.1016/j.jpowsour.2007.04.018
11 https://doi.org/10.1016/j.jpowsour.2009.04.030
12 https://doi.org/10.1016/j.jpowsour.2012.02.038
13 https://doi.org/10.1016/j.nanoen.2013.10.014
14 https://doi.org/10.1016/j.nanoen.2014.02.011
15 https://doi.org/10.1016/j.psep.2011.06.022
16 https://doi.org/10.1016/s0378-7753(02)00488-3
17 https://doi.org/10.1016/s0378-7753(03)00259-3
18 https://doi.org/10.1021/ja3091438
19 https://doi.org/10.1039/c3ta14217e
20 https://doi.org/10.1149/1.1353158
21 https://doi.org/10.1149/1.2136078
22 https://doi.org/10.1149/2.0121502jes
23 https://doi.org/10.1166/mex.2012.1075
24 https://doi.org/10.1246/cl.2004.1360
25 https://doi.org/10.3390/en6094682
26 https://doi.org/10.3390/ijms15046488
27 https://doi.org/10.3390/ijms151121080
28 schema:datePublished 2019-03
29 schema:datePublishedReg 2019-03-01
30 schema:description This paper focuses on the superiority of organic-inorganic hybrid ion-gel electrolytes for lithium-ion batteries (LiBs) over commercial electrolytes, such as 1 M LiPF6 in 1:1 ethylene carbonate (EC): dimethyl carbonate (DMC) {1 M LiPF6-EC: DMC}, in terms of their flame susceptibility. These ion-gel electrolytes possess ionic liquid monomers, which are confined within the borosilicate or silicate matrices that are ideal for nonflammability. Naked flame tests confirm that the organic-inorganic hybrid electrolytes are less susceptible to flames, and these electrolytes do not suffer from a major loss in terms of weight. In addition, the hybrids are self-extinguishable. Therefore, these hybrids are only oxidized when subjected to a flame unlike other commercial electrolytes used in lithium-ion batteries. Supplementary analyses using differential scanning calorimetric studies reveal that the hybrids are glassy until the temperature reaches more than 100°C. The current results are consistent with previously published data on the organic-inorganic hybrids.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N5306375f077d4a41ac8875117c3cedfb
35 Nabdfdb0aec9242e98134d0ba77434152
36 sg:journal.1136510
37 schema:name Flame-retardant properties of in situ sol-gel synthesized inorganic borosilicate/silicate polymer scaffold matrix comprising ionic liquid
38 schema:pagination 163-171
39 schema:productId N519e1b320b6f4d70a4689ce6104429d0
40 Nc98dddb849324ac29541b28480f79760
41 Ne1aa79a11a374e348d9240ea5e050110
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103492434
43 https://doi.org/10.1007/s11708-018-0554-2
44 schema:sdDatePublished 2019-04-11T11:55
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Ndb4cdec082aa4c129243a2a775d26a62
47 schema:url https://link.springer.com/10.1007%2Fs11708-018-0554-2
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N106649fe44a1411d8630aa0e30c3cddc rdf:first sg:person.014740523273.26
52 rdf:rest N20e35388eaf249ad9a5b9c7e8f8f3fe0
53 N20e35388eaf249ad9a5b9c7e8f8f3fe0 rdf:first sg:person.0624056443.81
54 rdf:rest Nb1e6f4c90bef4422b60b57413b1e3a19
55 N519e1b320b6f4d70a4689ce6104429d0 schema:name doi
56 schema:value 10.1007/s11708-018-0554-2
57 rdf:type schema:PropertyValue
58 N5306375f077d4a41ac8875117c3cedfb schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 Nabdfdb0aec9242e98134d0ba77434152 schema:volumeNumber 13
61 rdf:type schema:PublicationVolume
62 Nb1e6f4c90bef4422b60b57413b1e3a19 rdf:first sg:person.0671253026.49
63 rdf:rest Ne00b9e54ee77445c8175faee02871c8c
64 Nc98dddb849324ac29541b28480f79760 schema:name readcube_id
65 schema:value 96658caf76356ce0718cef1dd1f4da1c43ad6c7f12a47dd0ff6effcf520fe0ba
66 rdf:type schema:PropertyValue
67 Ndb4cdec082aa4c129243a2a775d26a62 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Ne00b9e54ee77445c8175faee02871c8c rdf:first sg:person.015470712471.35
70 rdf:rest rdf:nil
71 Ne1aa79a11a374e348d9240ea5e050110 schema:name dimensions_id
72 schema:value pub.1103492434
73 rdf:type schema:PropertyValue
74 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
75 schema:name Chemical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
78 schema:name Physical Chemistry (incl. Structural)
79 rdf:type schema:DefinedTerm
80 sg:journal.1136510 schema:issn 2095-1698
81 2095-1701
82 schema:name Frontiers in Energy
83 rdf:type schema:Periodical
84 sg:person.014740523273.26 schema:affiliation https://www.grid.ac/institutes/grid.412314.1
85 schema:familyName Smaran
86 schema:givenName Kumar Sai
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740523273.26
88 rdf:type schema:Person
89 sg:person.015470712471.35 schema:affiliation https://www.grid.ac/institutes/grid.444515.5
90 schema:familyName Matsumi
91 schema:givenName Noriyoshi
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015470712471.35
93 rdf:type schema:Person
94 sg:person.0624056443.81 schema:affiliation https://www.grid.ac/institutes/grid.265129.b
95 schema:familyName Badam
96 schema:givenName Rajashekar
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624056443.81
98 rdf:type schema:Person
99 sg:person.0671253026.49 schema:affiliation https://www.grid.ac/institutes/grid.444515.5
100 schema:familyName Vedarajan
101 schema:givenName Raman
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671253026.49
103 rdf:type schema:Person
104 sg:pub.10.1038/35104644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028300488
105 https://doi.org/10.1038/35104644
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/451652a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007137639
108 https://doi.org/10.1038/451652a
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/celc.201500372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047323019
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.ijhydene.2013.05.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024965000
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jpowsour.2004.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016951294
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jpowsour.2006.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004167491
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jpowsour.2007.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043268038
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jpowsour.2009.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044234158
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jpowsour.2012.02.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046833256
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.nanoen.2013.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016534271
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.nanoen.2014.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018593712
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.psep.2011.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009116065
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0378-7753(02)00488-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015373519
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0378-7753(03)00259-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026040087
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/ja3091438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019126274
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1039/c3ta14217e schema:sameAs https://app.dimensions.ai/details/publication/pub.1026335604
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1149/1.1353158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019390299
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1149/1.2136078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007790920
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1149/2.0121502jes schema:sameAs https://app.dimensions.ai/details/publication/pub.1011558806
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1166/mex.2012.1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012132325
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1246/cl.2004.1360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064489891
147 rdf:type schema:CreativeWork
148 https://doi.org/10.3390/en6094682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017648400
149 rdf:type schema:CreativeWork
150 https://doi.org/10.3390/ijms15046488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015957339
151 rdf:type schema:CreativeWork
152 https://doi.org/10.3390/ijms151121080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008549002
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.265129.b schema:alternateName Toyota Technological Institute
155 schema:name School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Ishikawa, Japan
156 Surface Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, 468-8511, Tempaku Nagoya, Japan
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.412314.1 schema:alternateName Ochanomizu University
159 schema:name Division of Chemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Ohtsuka, Bunkyo-ku, 112-8610, Tokyo, Japan
160 School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Ishikawa, Japan
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.444515.5 schema:alternateName Japan Advanced Institute of Science and Technology
163 schema:name Centre for Fuel Cell Technology, International Advanced Research Center for Powder Metallurgy and New Materials, Chennai, India
164 School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Ishikawa, Japan
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...