Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-01

AUTHORS

Kaiguo Fan, Huaguo Zhang, Jianjun Liang, Peng Chen, Bojian Xu, Ming Zhang

ABSTRACT

The identifying features of ship wakes in synthetic aperture radar (SAR) remote sensing images are of great importance for detecting ships and for extracting ship motion parameters. A statistical analysis was conducted on the identifying features of ship wakes in SAR images in the Yellow Sea. In this study, 1091 ship wake sub-images were selected from 327 SAR images in the Yellow Sea near Qingdao. Analysis of the identifying features of ship wakes in SAR images revealed that both turbulent wakes and Kelvin wakes account for the majority of ship wakes, with turbulent wakes occurring approximately four times as frequently as Kelvin wakes. Narrow- V wakes and internal wave wakes were comparatively rare, which is due to the peculiarities of the radar system parameters and marine environments required to observe these wakes. Additionally, we extracted ship motion parameters from four types of ship wakes in the SAR images. Specifically, internal wave wakes in SAR images in the Yellow Sea were also used to extract ship motion parameters. Validation of the extracted parameters indicated that the extraction of these parameters from ship wakes is a viable and accurate approach for the acquisition of ship motion parameters. These results provide a solid foundation for the commercialization of SAR-based technologies for detecting ships and extracting ship motion parameters. More... »

PAGES

1-8

References to SciGraph publications

  • 2015-12. Internal wave parameters retrieval from space-borne SAR image in FRONTIERS OF EARTH SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11707-018-0743-7

    DOI

    http://dx.doi.org/10.1007/s11707-018-0743-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112504766


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "State Oceanic Administration", 
              "id": "https://www.grid.ac/institutes/grid.420213.6", 
              "name": [
                "No. 22, Beiqing Road, Haidian District, P.O. Box 5136, 100094, Beijing, China", 
                "State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fan", 
            "givenName": "Kaiguo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Oceanic Administration", 
              "id": "https://www.grid.ac/institutes/grid.420213.6", 
              "name": [
                "State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Huaguo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Remote Sensing and Digital Earth", 
              "id": "https://www.grid.ac/institutes/grid.458443.a", 
              "name": [
                "Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liang", 
            "givenName": "Jianjun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Oceanic Administration", 
              "id": "https://www.grid.ac/institutes/grid.420213.6", 
              "name": [
                "State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Peng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "No. 22, Beiqing Road, Haidian District, P.O. Box 5136, 100094, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Bojian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Linyi University", 
              "id": "https://www.grid.ac/institutes/grid.410747.1", 
              "name": [
                "College of Information Science and Engineering, Linyi University, 276000, Linyi, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Ming", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11707-015-0506-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003529270", 
              "https://doi.org/10.1007/s11707-015-0506-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/014311697218494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011220204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1987.0087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025817329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/014311699211912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026091527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/jc093ic10p12293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029197294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/jc087ic05p03397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040427503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/014311697216568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041994582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/rs5020716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044425433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actaastro.2016.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051693720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/36.485129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061161429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2004.833390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061609209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2014.2326519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061613487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3724/sp.j.1146.2009.01527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071345485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/igarss.1988.569510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086218714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2017.2751083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091965071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/igarss.2007.4422995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093442519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2017.2777264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099748090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431161.2018.1425568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100406681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s18020334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100592531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2018.2823007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103551569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2018.2828833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104141593"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-01", 
        "datePublishedReg": "2019-03-01", 
        "description": "The identifying features of ship wakes in synthetic aperture radar (SAR) remote sensing images are of great importance for detecting ships and for extracting ship motion parameters. A statistical analysis was conducted on the identifying features of ship wakes in SAR images in the Yellow Sea. In this study, 1091 ship wake sub-images were selected from 327 SAR images in the Yellow Sea near Qingdao. Analysis of the identifying features of ship wakes in SAR images revealed that both turbulent wakes and Kelvin wakes account for the majority of ship wakes, with turbulent wakes occurring approximately four times as frequently as Kelvin wakes. Narrow- V wakes and internal wave wakes were comparatively rare, which is due to the peculiarities of the radar system parameters and marine environments required to observe these wakes. Additionally, we extracted ship motion parameters from four types of ship wakes in the SAR images. Specifically, internal wave wakes in SAR images in the Yellow Sea were also used to extract ship motion parameters. Validation of the extracted parameters indicated that the extraction of these parameters from ship wakes is a viable and accurate approach for the acquisition of ship motion parameters. These results provide a solid foundation for the commercialization of SAR-based technologies for detecting ships and extracting ship motion parameters.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11707-018-0743-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1047739", 
            "issn": [
              "2095-0195", 
              "2095-0209"
            ], 
            "name": "Frontiers of Earth Science", 
            "type": "Periodical"
          }
        ], 
        "name": "Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea", 
        "pagination": "1-8", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "93ba97a72531f3fa529d1637fc17772242ab4e457b5d6763d6dad45034c9ae09"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11707-018-0743-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112504766"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11707-018-0743-7", 
          "https://app.dimensions.ai/details/publication/pub.1112504766"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77548_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11707-018-0743-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0743-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0743-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0743-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0743-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      21 PREDICATES      45 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11707-018-0743-7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N205e7957ed4d4bccbeb0746ab1e6ab7e
    4 schema:citation sg:pub.10.1007/s11707-015-0506-7
    5 https://doi.org/10.1016/j.actaastro.2016.07.001
    6 https://doi.org/10.1029/jc087ic05p03397
    7 https://doi.org/10.1029/jc093ic10p12293
    8 https://doi.org/10.1080/01431161.2018.1425568
    9 https://doi.org/10.1080/014311697216568
    10 https://doi.org/10.1080/014311697218494
    11 https://doi.org/10.1080/014311699211912
    12 https://doi.org/10.1098/rspa.1987.0087
    13 https://doi.org/10.1109/36.485129
    14 https://doi.org/10.1109/igarss.1988.569510
    15 https://doi.org/10.1109/igarss.2007.4422995
    16 https://doi.org/10.1109/lgrs.2017.2751083
    17 https://doi.org/10.1109/lgrs.2017.2777264
    18 https://doi.org/10.1109/lgrs.2018.2823007
    19 https://doi.org/10.1109/tgrs.2004.833390
    20 https://doi.org/10.1109/tgrs.2014.2326519
    21 https://doi.org/10.1109/tgrs.2018.2828833
    22 https://doi.org/10.3390/rs5020716
    23 https://doi.org/10.3390/s18020334
    24 https://doi.org/10.3724/sp.j.1146.2009.01527
    25 schema:datePublished 2019-03-01
    26 schema:datePublishedReg 2019-03-01
    27 schema:description The identifying features of ship wakes in synthetic aperture radar (SAR) remote sensing images are of great importance for detecting ships and for extracting ship motion parameters. A statistical analysis was conducted on the identifying features of ship wakes in SAR images in the Yellow Sea. In this study, 1091 ship wake sub-images were selected from 327 SAR images in the Yellow Sea near Qingdao. Analysis of the identifying features of ship wakes in SAR images revealed that both turbulent wakes and Kelvin wakes account for the majority of ship wakes, with turbulent wakes occurring approximately four times as frequently as Kelvin wakes. Narrow- V wakes and internal wave wakes were comparatively rare, which is due to the peculiarities of the radar system parameters and marine environments required to observe these wakes. Additionally, we extracted ship motion parameters from four types of ship wakes in the SAR images. Specifically, internal wave wakes in SAR images in the Yellow Sea were also used to extract ship motion parameters. Validation of the extracted parameters indicated that the extraction of these parameters from ship wakes is a viable and accurate approach for the acquisition of ship motion parameters. These results provide a solid foundation for the commercialization of SAR-based technologies for detecting ships and extracting ship motion parameters.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf sg:journal.1047739
    32 schema:name Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea
    33 schema:pagination 1-8
    34 schema:productId N946602c3dcbe4103bc2718823e0d042f
    35 Na63d4020db7d4cf1b409930dd739c297
    36 Nb1ce982f55ec48d98dbff102f722b101
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504766
    38 https://doi.org/10.1007/s11707-018-0743-7
    39 schema:sdDatePublished 2019-04-11T10:48
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Nf94afa2a705b48dbbef6e7a4f6c4c547
    42 schema:url https://link.springer.com/10.1007%2Fs11707-018-0743-7
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N1428b815344a4e6da63e1f607fd53730 schema:affiliation https://www.grid.ac/institutes/grid.420213.6
    47 schema:familyName Fan
    48 schema:givenName Kaiguo
    49 rdf:type schema:Person
    50 N1c7aaae6786a42dea6dee158bc3eac9d schema:affiliation https://www.grid.ac/institutes/grid.458443.a
    51 schema:familyName Liang
    52 schema:givenName Jianjun
    53 rdf:type schema:Person
    54 N205e7957ed4d4bccbeb0746ab1e6ab7e rdf:first N1428b815344a4e6da63e1f607fd53730
    55 rdf:rest Na16f9a4be251495e9cb0ae290a2c897b
    56 N3bc92645dfc0491ca34372b2852641eb rdf:first Ne054f4f35cf54bd59fea80c675f84573
    57 rdf:rest Nc6ae030827fb4c58b30d1e3ef8493338
    58 N4e7bd2a33ea7476583ce740215cf2b1b rdf:first N9cf7a96442fd49f1aa52cae4c92ac636
    59 rdf:rest rdf:nil
    60 N946602c3dcbe4103bc2718823e0d042f schema:name dimensions_id
    61 schema:value pub.1112504766
    62 rdf:type schema:PropertyValue
    63 N9cf7a96442fd49f1aa52cae4c92ac636 schema:affiliation https://www.grid.ac/institutes/grid.410747.1
    64 schema:familyName Zhang
    65 schema:givenName Ming
    66 rdf:type schema:Person
    67 Na16f9a4be251495e9cb0ae290a2c897b rdf:first Nfd8a460b31b44def95526a56975cc08c
    68 rdf:rest Nc6586a417524423b852847e2441923af
    69 Na63d4020db7d4cf1b409930dd739c297 schema:name doi
    70 schema:value 10.1007/s11707-018-0743-7
    71 rdf:type schema:PropertyValue
    72 Nb1ce982f55ec48d98dbff102f722b101 schema:name readcube_id
    73 schema:value 93ba97a72531f3fa529d1637fc17772242ab4e457b5d6763d6dad45034c9ae09
    74 rdf:type schema:PropertyValue
    75 Nc6586a417524423b852847e2441923af rdf:first N1c7aaae6786a42dea6dee158bc3eac9d
    76 rdf:rest N3bc92645dfc0491ca34372b2852641eb
    77 Nc6ae030827fb4c58b30d1e3ef8493338 rdf:first Ncaad3aa84e374244b8c0e2146fe80797
    78 rdf:rest N4e7bd2a33ea7476583ce740215cf2b1b
    79 Ncaad3aa84e374244b8c0e2146fe80797 schema:affiliation Ndc21c96e7fe54c9488c8a0fe19b7d1f2
    80 schema:familyName Xu
    81 schema:givenName Bojian
    82 rdf:type schema:Person
    83 Ndc21c96e7fe54c9488c8a0fe19b7d1f2 schema:name No. 22, Beiqing Road, Haidian District, P.O. Box 5136, 100094, Beijing, China
    84 rdf:type schema:Organization
    85 Ne054f4f35cf54bd59fea80c675f84573 schema:affiliation https://www.grid.ac/institutes/grid.420213.6
    86 schema:familyName Chen
    87 schema:givenName Peng
    88 rdf:type schema:Person
    89 Nf94afa2a705b48dbbef6e7a4f6c4c547 schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 Nfd8a460b31b44def95526a56975cc08c schema:affiliation https://www.grid.ac/institutes/grid.420213.6
    92 schema:familyName Zhang
    93 schema:givenName Huaguo
    94 rdf:type schema:Person
    95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Information and Computing Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Artificial Intelligence and Image Processing
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1047739 schema:issn 2095-0195
    102 2095-0209
    103 schema:name Frontiers of Earth Science
    104 rdf:type schema:Periodical
    105 sg:pub.10.1007/s11707-015-0506-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003529270
    106 https://doi.org/10.1007/s11707-015-0506-7
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.actaastro.2016.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051693720
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1029/jc087ic05p03397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040427503
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1029/jc093ic10p12293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029197294
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1080/01431161.2018.1425568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100406681
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1080/014311697216568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041994582
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1080/014311697218494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011220204
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1080/014311699211912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026091527
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1098/rspa.1987.0087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025817329
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/36.485129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161429
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/igarss.1988.569510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086218714
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/igarss.2007.4422995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093442519
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/lgrs.2017.2751083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091965071
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/lgrs.2017.2777264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099748090
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/lgrs.2018.2823007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103551569
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/tgrs.2004.833390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609209
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/tgrs.2014.2326519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613487
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/tgrs.2018.2828833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104141593
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.3390/rs5020716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044425433
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.3390/s18020334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100592531
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.3724/sp.j.1146.2009.01527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071345485
    147 rdf:type schema:CreativeWork
    148 https://www.grid.ac/institutes/grid.410747.1 schema:alternateName Linyi University
    149 schema:name College of Information Science and Engineering, Linyi University, 276000, Linyi, China
    150 rdf:type schema:Organization
    151 https://www.grid.ac/institutes/grid.420213.6 schema:alternateName State Oceanic Administration
    152 schema:name No. 22, Beiqing Road, Haidian District, P.O. Box 5136, 100094, Beijing, China
    153 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
    154 rdf:type schema:Organization
    155 https://www.grid.ac/institutes/grid.458443.a schema:alternateName Institute of Remote Sensing and Digital Earth
    156 schema:name Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...