Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-01

AUTHORS

Kaiguo Fan, Huaguo Zhang, Jianjun Liang, Peng Chen, Bojian Xu, Ming Zhang

ABSTRACT

The identifying features of ship wakes in synthetic aperture radar (SAR) remote sensing images are of great importance for detecting ships and for extracting ship motion parameters. A statistical analysis was conducted on the identifying features of ship wakes in SAR images in the Yellow Sea. In this study, 1091 ship wake sub-images were selected from 327 SAR images in the Yellow Sea near Qingdao. Analysis of the identifying features of ship wakes in SAR images revealed that both turbulent wakes and Kelvin wakes account for the majority of ship wakes, with turbulent wakes occurring approximately four times as frequently as Kelvin wakes. Narrow- V wakes and internal wave wakes were comparatively rare, which is due to the peculiarities of the radar system parameters and marine environments required to observe these wakes. Additionally, we extracted ship motion parameters from four types of ship wakes in the SAR images. Specifically, internal wave wakes in SAR images in the Yellow Sea were also used to extract ship motion parameters. Validation of the extracted parameters indicated that the extraction of these parameters from ship wakes is a viable and accurate approach for the acquisition of ship motion parameters. These results provide a solid foundation for the commercialization of SAR-based technologies for detecting ships and extracting ship motion parameters. More... »

PAGES

1-8

References to SciGraph publications

  • 2015-12. Internal wave parameters retrieval from space-borne SAR image in FRONTIERS OF EARTH SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11707-018-0743-7

    DOI

    http://dx.doi.org/10.1007/s11707-018-0743-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112504766


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "State Oceanic Administration", 
              "id": "https://www.grid.ac/institutes/grid.420213.6", 
              "name": [
                "No. 22, Beiqing Road, Haidian District, P.O. Box 5136, 100094, Beijing, China", 
                "State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fan", 
            "givenName": "Kaiguo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Oceanic Administration", 
              "id": "https://www.grid.ac/institutes/grid.420213.6", 
              "name": [
                "State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Huaguo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Remote Sensing and Digital Earth", 
              "id": "https://www.grid.ac/institutes/grid.458443.a", 
              "name": [
                "Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liang", 
            "givenName": "Jianjun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Oceanic Administration", 
              "id": "https://www.grid.ac/institutes/grid.420213.6", 
              "name": [
                "State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Peng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "No. 22, Beiqing Road, Haidian District, P.O. Box 5136, 100094, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Bojian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Linyi University", 
              "id": "https://www.grid.ac/institutes/grid.410747.1", 
              "name": [
                "College of Information Science and Engineering, Linyi University, 276000, Linyi, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Ming", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11707-015-0506-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003529270", 
              "https://doi.org/10.1007/s11707-015-0506-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/014311697218494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011220204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1987.0087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025817329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/014311699211912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026091527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/jc093ic10p12293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029197294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/jc087ic05p03397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040427503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/014311697216568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041994582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/rs5020716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044425433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actaastro.2016.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051693720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/36.485129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061161429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2004.833390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061609209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2014.2326519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061613487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3724/sp.j.1146.2009.01527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071345485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/igarss.1988.569510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086218714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2017.2751083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091965071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/igarss.2007.4422995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093442519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2017.2777264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099748090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431161.2018.1425568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100406681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s18020334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100592531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2018.2823007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103551569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2018.2828833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104141593"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-01", 
        "datePublishedReg": "2019-03-01", 
        "description": "The identifying features of ship wakes in synthetic aperture radar (SAR) remote sensing images are of great importance for detecting ships and for extracting ship motion parameters. A statistical analysis was conducted on the identifying features of ship wakes in SAR images in the Yellow Sea. In this study, 1091 ship wake sub-images were selected from 327 SAR images in the Yellow Sea near Qingdao. Analysis of the identifying features of ship wakes in SAR images revealed that both turbulent wakes and Kelvin wakes account for the majority of ship wakes, with turbulent wakes occurring approximately four times as frequently as Kelvin wakes. Narrow- V wakes and internal wave wakes were comparatively rare, which is due to the peculiarities of the radar system parameters and marine environments required to observe these wakes. Additionally, we extracted ship motion parameters from four types of ship wakes in the SAR images. Specifically, internal wave wakes in SAR images in the Yellow Sea were also used to extract ship motion parameters. Validation of the extracted parameters indicated that the extraction of these parameters from ship wakes is a viable and accurate approach for the acquisition of ship motion parameters. These results provide a solid foundation for the commercialization of SAR-based technologies for detecting ships and extracting ship motion parameters.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11707-018-0743-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1047739", 
            "issn": [
              "2095-0195", 
              "2095-0209"
            ], 
            "name": "Frontiers of Earth Science", 
            "type": "Periodical"
          }
        ], 
        "name": "Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea", 
        "pagination": "1-8", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "93ba97a72531f3fa529d1637fc17772242ab4e457b5d6763d6dad45034c9ae09"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11707-018-0743-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112504766"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11707-018-0743-7", 
          "https://app.dimensions.ai/details/publication/pub.1112504766"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77548_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11707-018-0743-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0743-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0743-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0743-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0743-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      21 PREDICATES      45 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11707-018-0743-7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N23f38f2f5aee4f57ac23e1702ab8e0c9
    4 schema:citation sg:pub.10.1007/s11707-015-0506-7
    5 https://doi.org/10.1016/j.actaastro.2016.07.001
    6 https://doi.org/10.1029/jc087ic05p03397
    7 https://doi.org/10.1029/jc093ic10p12293
    8 https://doi.org/10.1080/01431161.2018.1425568
    9 https://doi.org/10.1080/014311697216568
    10 https://doi.org/10.1080/014311697218494
    11 https://doi.org/10.1080/014311699211912
    12 https://doi.org/10.1098/rspa.1987.0087
    13 https://doi.org/10.1109/36.485129
    14 https://doi.org/10.1109/igarss.1988.569510
    15 https://doi.org/10.1109/igarss.2007.4422995
    16 https://doi.org/10.1109/lgrs.2017.2751083
    17 https://doi.org/10.1109/lgrs.2017.2777264
    18 https://doi.org/10.1109/lgrs.2018.2823007
    19 https://doi.org/10.1109/tgrs.2004.833390
    20 https://doi.org/10.1109/tgrs.2014.2326519
    21 https://doi.org/10.1109/tgrs.2018.2828833
    22 https://doi.org/10.3390/rs5020716
    23 https://doi.org/10.3390/s18020334
    24 https://doi.org/10.3724/sp.j.1146.2009.01527
    25 schema:datePublished 2019-03-01
    26 schema:datePublishedReg 2019-03-01
    27 schema:description The identifying features of ship wakes in synthetic aperture radar (SAR) remote sensing images are of great importance for detecting ships and for extracting ship motion parameters. A statistical analysis was conducted on the identifying features of ship wakes in SAR images in the Yellow Sea. In this study, 1091 ship wake sub-images were selected from 327 SAR images in the Yellow Sea near Qingdao. Analysis of the identifying features of ship wakes in SAR images revealed that both turbulent wakes and Kelvin wakes account for the majority of ship wakes, with turbulent wakes occurring approximately four times as frequently as Kelvin wakes. Narrow- V wakes and internal wave wakes were comparatively rare, which is due to the peculiarities of the radar system parameters and marine environments required to observe these wakes. Additionally, we extracted ship motion parameters from four types of ship wakes in the SAR images. Specifically, internal wave wakes in SAR images in the Yellow Sea were also used to extract ship motion parameters. Validation of the extracted parameters indicated that the extraction of these parameters from ship wakes is a viable and accurate approach for the acquisition of ship motion parameters. These results provide a solid foundation for the commercialization of SAR-based technologies for detecting ships and extracting ship motion parameters.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf sg:journal.1047739
    32 schema:name Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea
    33 schema:pagination 1-8
    34 schema:productId N41bd057aa9494be993aa94c08c7fc4c7
    35 N7113f5164b4c466dbb2c74e149199755
    36 N800ebc58b9e740c6ab7b1376e152cb74
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504766
    38 https://doi.org/10.1007/s11707-018-0743-7
    39 schema:sdDatePublished 2019-04-11T10:48
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N85828a063d034f9ab2b42eadba268509
    42 schema:url https://link.springer.com/10.1007%2Fs11707-018-0743-7
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N09d4110fd31743269453f6ddc19139dd schema:name No. 22, Beiqing Road, Haidian District, P.O. Box 5136, 100094, Beijing, China
    47 rdf:type schema:Organization
    48 N23f38f2f5aee4f57ac23e1702ab8e0c9 rdf:first N97aadd82d5664ec28382f0285d6995ef
    49 rdf:rest N373ca2db9d3a4b148619432b4871427f
    50 N33a983a7955a46f88192539fb914bb89 rdf:first Nd5966916c6444184b4a5a5aa3f0ccd3f
    51 rdf:rest Nf14317443b3b4247b12cfb6a7c326e01
    52 N373ca2db9d3a4b148619432b4871427f rdf:first N782ffa61a5ab47678014019f84dd559b
    53 rdf:rest N33a983a7955a46f88192539fb914bb89
    54 N41bd057aa9494be993aa94c08c7fc4c7 schema:name readcube_id
    55 schema:value 93ba97a72531f3fa529d1637fc17772242ab4e457b5d6763d6dad45034c9ae09
    56 rdf:type schema:PropertyValue
    57 N4cd1b2064c4c479cae6296d62035b616 rdf:first N94134bbad7374552a1246cea18cf75aa
    58 rdf:rest Nab22d5af61204d0e8003d6eaa27ec2a5
    59 N7113f5164b4c466dbb2c74e149199755 schema:name doi
    60 schema:value 10.1007/s11707-018-0743-7
    61 rdf:type schema:PropertyValue
    62 N782ffa61a5ab47678014019f84dd559b schema:affiliation https://www.grid.ac/institutes/grid.420213.6
    63 schema:familyName Zhang
    64 schema:givenName Huaguo
    65 rdf:type schema:Person
    66 N800ebc58b9e740c6ab7b1376e152cb74 schema:name dimensions_id
    67 schema:value pub.1112504766
    68 rdf:type schema:PropertyValue
    69 N85828a063d034f9ab2b42eadba268509 schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 N94134bbad7374552a1246cea18cf75aa schema:affiliation N09d4110fd31743269453f6ddc19139dd
    72 schema:familyName Xu
    73 schema:givenName Bojian
    74 rdf:type schema:Person
    75 N97aadd82d5664ec28382f0285d6995ef schema:affiliation https://www.grid.ac/institutes/grid.420213.6
    76 schema:familyName Fan
    77 schema:givenName Kaiguo
    78 rdf:type schema:Person
    79 Nab22d5af61204d0e8003d6eaa27ec2a5 rdf:first Nf22e1d19ca4744c0a41a0b6e5ae86368
    80 rdf:rest rdf:nil
    81 Nb4cd3c3928ed47bc95a7909be6bbdad5 schema:affiliation https://www.grid.ac/institutes/grid.420213.6
    82 schema:familyName Chen
    83 schema:givenName Peng
    84 rdf:type schema:Person
    85 Nd5966916c6444184b4a5a5aa3f0ccd3f schema:affiliation https://www.grid.ac/institutes/grid.458443.a
    86 schema:familyName Liang
    87 schema:givenName Jianjun
    88 rdf:type schema:Person
    89 Nf14317443b3b4247b12cfb6a7c326e01 rdf:first Nb4cd3c3928ed47bc95a7909be6bbdad5
    90 rdf:rest N4cd1b2064c4c479cae6296d62035b616
    91 Nf22e1d19ca4744c0a41a0b6e5ae86368 schema:affiliation https://www.grid.ac/institutes/grid.410747.1
    92 schema:familyName Zhang
    93 schema:givenName Ming
    94 rdf:type schema:Person
    95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Information and Computing Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Artificial Intelligence and Image Processing
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1047739 schema:issn 2095-0195
    102 2095-0209
    103 schema:name Frontiers of Earth Science
    104 rdf:type schema:Periodical
    105 sg:pub.10.1007/s11707-015-0506-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003529270
    106 https://doi.org/10.1007/s11707-015-0506-7
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.actaastro.2016.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051693720
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1029/jc087ic05p03397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040427503
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1029/jc093ic10p12293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029197294
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1080/01431161.2018.1425568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100406681
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1080/014311697216568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041994582
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1080/014311697218494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011220204
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1080/014311699211912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026091527
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1098/rspa.1987.0087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025817329
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/36.485129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161429
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/igarss.1988.569510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086218714
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/igarss.2007.4422995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093442519
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/lgrs.2017.2751083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091965071
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/lgrs.2017.2777264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099748090
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/lgrs.2018.2823007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103551569
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/tgrs.2004.833390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609209
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/tgrs.2014.2326519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613487
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/tgrs.2018.2828833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104141593
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.3390/rs5020716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044425433
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.3390/s18020334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100592531
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.3724/sp.j.1146.2009.01527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071345485
    147 rdf:type schema:CreativeWork
    148 https://www.grid.ac/institutes/grid.410747.1 schema:alternateName Linyi University
    149 schema:name College of Information Science and Engineering, Linyi University, 276000, Linyi, China
    150 rdf:type schema:Organization
    151 https://www.grid.ac/institutes/grid.420213.6 schema:alternateName State Oceanic Administration
    152 schema:name No. 22, Beiqing Road, Haidian District, P.O. Box 5136, 100094, Beijing, China
    153 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
    154 rdf:type schema:Organization
    155 https://www.grid.ac/institutes/grid.458443.a schema:alternateName Institute of Remote Sensing and Digital Earth
    156 schema:name Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...