Terrain relief periods of loess landforms based on terrain profiles of the Loess Plateau in northern Shaanxi Province, China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-29

AUTHORS

Jianjun Cao, Guoan Tang, Xuan Fang, Jilong Li, Yongjuan Liu, Yiting Zhang, Ying Zhu, Fayuan Li

ABSTRACT

The Loess Plateau is densely covered by numerous types of gullies which represent different soil erosion intensities. Therefore, research on topographic variation features of the loess gullies is of great significance to environmental protection and ecological management. Using a 5 m digital elevation model and data from a national geographic database, this paper studies different topographical areas of the Loess Plateau, including Shenmu, Suide, Yanchuan, Ganquan, Yijun, and Chunhua, to derive representative gully terrain profile data of the sampled areas. First, the profile data are standardized in MATLAB and then decomposed using the ensemble empirical mode decomposition method. Then, a significance test is performed on the results; the test confidence is 95% to 99%. The most reliable decomposition component is then used to calculate the relief period and size of the gullies. The results showed that relief periods of the Chunhua, Shenmu, Yijun, Yuanchuan, Ganquan, and Suide gullies are 1110.14 m, 1096.85 m, 1002.49 m, 523.48 m, 498.12 m, and 270.83 m, respectively. In terms of gully size, the loess landforms are sorted as loess fragmented tableland, aeolian and dune, loess tableland, loess ridge, loess hill and loess ridge, and loess hill, in descending order. Taken together, the gully terrain features of the sample areas and the results of the study are approximately consistent with the actual terrain profiles. Thus, we conclude that ensemble empirical mode decomposition is a reliable method for the study of the relief and topography of loess gullies. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11707-018-0732-x

DOI

http://dx.doi.org/10.1007/s11707-018-0732-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110953303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, 210023, Nanjing, China", 
            "School of Environment Science, Nanjing Xiaozhuang University, 211171, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Jianjun", 
        "id": "sg:person.016416027527.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416027527.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Normal University", 
          "id": "https://www.grid.ac/institutes/grid.260474.3", 
          "name": [
            "Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, 210023, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Guoan", 
        "id": "sg:person.013733037575.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733037575.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, 210023, Nanjing, China", 
            "School of Environment Science, Nanjing Xiaozhuang University, 211171, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Xuan", 
        "id": "sg:person.01302763032.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302763032.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Normal University", 
          "id": "https://www.grid.ac/institutes/grid.260474.3", 
          "name": [
            "Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, 210023, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jilong", 
        "id": "sg:person.012103277727.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103277727.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "School of Environment Science, Nanjing Xiaozhuang University, 211171, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yongjuan", 
        "id": "sg:person.011171031044.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171031044.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "School of Environment Science, Nanjing Xiaozhuang University, 211171, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yiting", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "School of Environment Science, Nanjing Xiaozhuang University, 211171, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Normal University", 
          "id": "https://www.grid.ac/institutes/grid.260474.3", 
          "name": [
            "Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, 210023, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Fayuan", 
        "id": "sg:person.013260235055.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260235055.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.catena.2014.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001529727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-0182(96)88700-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006714882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00423110802167466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009444645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.still.2006.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010349391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-555x(95)00141-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010798311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-3004(95)00104-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010837991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.08.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012362136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8306.1975.tb01058.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018370046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11707-015-0519-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019371691", 
          "https://doi.org/10.1007/s11707-015-0519-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earscirev.2013.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020388543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13658816.2012.739690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025522010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1028014635", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-8709-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028014635", 
          "https://doi.org/10.1007/978-1-4020-8709-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-8709-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028014635", 
          "https://doi.org/10.1007/978-1-4020-8709-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2012.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029022783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ldr.2246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029815737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02826705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030574403", 
          "https://doi.org/10.1007/bf02826705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/357680a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030930977", 
          "https://doi.org/10.1038/357680a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12145-016-0275-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034500957", 
          "https://doi.org/10.1007/s12145-016-0275-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12145-016-0275-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034500957", 
          "https://doi.org/10.1007/s12145-016-0275-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2014.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035748739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.3899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036185716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2012.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036672250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-013-2686-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039336865", 
          "https://doi.org/10.1007/s12665-013-2686-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1440-1738.2006.00524.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039422715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-8663(81)90003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041878513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-8663(81)90003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041878513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2016.01.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043109596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.1873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044762947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.1873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044762947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007jf000866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045427058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2003.1221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045430544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02312510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046419639", 
          "https://doi.org/10.1007/bf02312510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02883721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047603148", 
          "https://doi.org/10.1007/bf02883721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.still.2015.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047684075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0091-7613(1994)022<0163:hfit>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047737790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2005.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048274755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1998.0193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048418364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2003.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048821775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2003.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048821775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049350317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1127/0372-8854/2013/0110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062697735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793536909000047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063022921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1047.2009.00753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071329991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijgi6050141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085106506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tgis.12277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085133157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812703347_0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088721887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-earth-063016-020552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091506252"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12-29", 
    "datePublishedReg": "2018-12-29", 
    "description": "The Loess Plateau is densely covered by numerous types of gullies which represent different soil erosion intensities. Therefore, research on topographic variation features of the loess gullies is of great significance to environmental protection and ecological management. Using a 5 m digital elevation model and data from a national geographic database, this paper studies different topographical areas of the Loess Plateau, including Shenmu, Suide, Yanchuan, Ganquan, Yijun, and Chunhua, to derive representative gully terrain profile data of the sampled areas. First, the profile data are standardized in MATLAB and then decomposed using the ensemble empirical mode decomposition method. Then, a significance test is performed on the results; the test confidence is 95% to 99%. The most reliable decomposition component is then used to calculate the relief period and size of the gullies. The results showed that relief periods of the Chunhua, Shenmu, Yijun, Yuanchuan, Ganquan, and Suide gullies are 1110.14 m, 1096.85 m, 1002.49 m, 523.48 m, 498.12 m, and 270.83 m, respectively. In terms of gully size, the loess landforms are sorted as loess fragmented tableland, aeolian and dune, loess tableland, loess ridge, loess hill and loess ridge, and loess hill, in descending order. Taken together, the gully terrain features of the sample areas and the results of the study are approximately consistent with the actual terrain profiles. Thus, we conclude that ensemble empirical mode decomposition is a reliable method for the study of the relief and topography of loess gullies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11707-018-0732-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047739", 
        "issn": [
          "2095-0195", 
          "2095-0209"
        ], 
        "name": "Frontiers of Earth Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Terrain relief periods of loess landforms based on terrain profiles of the Loess Plateau in northern Shaanxi Province, China", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "afa5ad1a677af5c93df1060c93793307fc9c7423ae09751533d32e21bafb6aa0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11707-018-0732-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110953303"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11707-018-0732-x", 
      "https://app.dimensions.ai/details/publication/pub.1110953303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000306_0000000306/records_49258_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11707-018-0732-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0732-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0732-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0732-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0732-x'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      21 PREDICATES      67 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11707-018-0732-x schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author Na5bbe44bd3f64dc6876ee65c02f91c6f
4 schema:citation sg:pub.10.1007/978-1-4020-8709-7
5 sg:pub.10.1007/bf02312510
6 sg:pub.10.1007/bf02826705
7 sg:pub.10.1007/bf02883721
8 sg:pub.10.1007/s11707-015-0519-2
9 sg:pub.10.1007/s12145-016-0275-1
10 sg:pub.10.1007/s12665-013-2686-3
11 sg:pub.10.1038/357680a0
12 https://app.dimensions.ai/details/publication/pub.1028014635
13 https://doi.org/10.1002/esp.1873
14 https://doi.org/10.1002/esp.3899
15 https://doi.org/10.1002/ldr.2246
16 https://doi.org/10.1016/0031-0182(96)88700-1
17 https://doi.org/10.1016/0031-8663(81)90003-x
18 https://doi.org/10.1016/0098-3004(95)00104-2
19 https://doi.org/10.1016/0169-555x(95)00141-q
20 https://doi.org/10.1016/j.cageo.2012.05.002
21 https://doi.org/10.1016/j.catena.2005.06.001
22 https://doi.org/10.1016/j.catena.2014.05.009
23 https://doi.org/10.1016/j.earscirev.2013.12.006
24 https://doi.org/10.1016/j.geomorph.2012.02.019
25 https://doi.org/10.1016/j.geomorph.2014.10.005
26 https://doi.org/10.1016/j.jhydrol.2016.01.061
27 https://doi.org/10.1016/j.patrec.2003.09.004
28 https://doi.org/10.1016/j.scitotenv.2016.08.082
29 https://doi.org/10.1016/j.still.2006.06.007
30 https://doi.org/10.1016/j.still.2015.07.012
31 https://doi.org/10.1029/2007jf000866
32 https://doi.org/10.1080/00423110802167466
33 https://doi.org/10.1080/13658816.2012.739690
34 https://doi.org/10.1098/rspa.1998.0193
35 https://doi.org/10.1098/rspa.2003.1221
36 https://doi.org/10.1111/j.1440-1738.2006.00524.x
37 https://doi.org/10.1111/j.1467-8306.1975.tb01058.x
38 https://doi.org/10.1111/tgis.12277
39 https://doi.org/10.1127/0372-8854/2013/0110
40 https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2
41 https://doi.org/10.1130/0091-7613(1994)022<0163:hfit>2.3.co;2
42 https://doi.org/10.1142/9789812703347_0005
43 https://doi.org/10.1142/s1793536909000047
44 https://doi.org/10.1146/annurev-earth-063016-020552
45 https://doi.org/10.3390/ijgi6050141
46 https://doi.org/10.3724/sp.j.1047.2009.00753
47 schema:datePublished 2018-12-29
48 schema:datePublishedReg 2018-12-29
49 schema:description The Loess Plateau is densely covered by numerous types of gullies which represent different soil erosion intensities. Therefore, research on topographic variation features of the loess gullies is of great significance to environmental protection and ecological management. Using a 5 m digital elevation model and data from a national geographic database, this paper studies different topographical areas of the Loess Plateau, including Shenmu, Suide, Yanchuan, Ganquan, Yijun, and Chunhua, to derive representative gully terrain profile data of the sampled areas. First, the profile data are standardized in MATLAB and then decomposed using the ensemble empirical mode decomposition method. Then, a significance test is performed on the results; the test confidence is 95% to 99%. The most reliable decomposition component is then used to calculate the relief period and size of the gullies. The results showed that relief periods of the Chunhua, Shenmu, Yijun, Yuanchuan, Ganquan, and Suide gullies are 1110.14 m, 1096.85 m, 1002.49 m, 523.48 m, 498.12 m, and 270.83 m, respectively. In terms of gully size, the loess landforms are sorted as loess fragmented tableland, aeolian and dune, loess tableland, loess ridge, loess hill and loess ridge, and loess hill, in descending order. Taken together, the gully terrain features of the sample areas and the results of the study are approximately consistent with the actual terrain profiles. Thus, we conclude that ensemble empirical mode decomposition is a reliable method for the study of the relief and topography of loess gullies.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf sg:journal.1047739
54 schema:name Terrain relief periods of loess landforms based on terrain profiles of the Loess Plateau in northern Shaanxi Province, China
55 schema:pagination 1-12
56 schema:productId N4aeceb003a634900b9f5f3ace8e9fde1
57 N66e981347c574f2fa4c877334059b083
58 Nc235cdfe215b49108197f9c4e97f101e
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110953303
60 https://doi.org/10.1007/s11707-018-0732-x
61 schema:sdDatePublished 2019-04-11T08:28
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N3489a619148b4369a94cb16e32cd4b06
64 schema:url https://link.springer.com/10.1007%2Fs11707-018-0732-x
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N3489a619148b4369a94cb16e32cd4b06 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N3fbdca0a1cd7416abf0d6e21af641846 rdf:first sg:person.011171031044.30
71 rdf:rest N45d63733d0f340139af2cc7c0fca7d61
72 N45d63733d0f340139af2cc7c0fca7d61 rdf:first Nc0a28dbea367482b952c2723bc1b33f1
73 rdf:rest Na8d7bdeb4d8c4bbdbc78114bec22963a
74 N4aeceb003a634900b9f5f3ace8e9fde1 schema:name readcube_id
75 schema:value afa5ad1a677af5c93df1060c93793307fc9c7423ae09751533d32e21bafb6aa0
76 rdf:type schema:PropertyValue
77 N65daf51873d548e98d4f894cbb7a646e rdf:first sg:person.013733037575.59
78 rdf:rest Ne6cb78ba9c4b4effa990060b6ad02439
79 N66e981347c574f2fa4c877334059b083 schema:name doi
80 schema:value 10.1007/s11707-018-0732-x
81 rdf:type schema:PropertyValue
82 N75a65fad67dd4836958ca813b7c0d22e rdf:first sg:person.012103277727.39
83 rdf:rest N3fbdca0a1cd7416abf0d6e21af641846
84 Na5bbe44bd3f64dc6876ee65c02f91c6f rdf:first sg:person.016416027527.61
85 rdf:rest N65daf51873d548e98d4f894cbb7a646e
86 Na8d7bdeb4d8c4bbdbc78114bec22963a rdf:first Ne6da5f5b17f0469098e7bfc3daff53e5
87 rdf:rest Ndfb2d279edac484db16e63e70d8dcb61
88 Nc0a28dbea367482b952c2723bc1b33f1 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
89 schema:familyName Zhang
90 schema:givenName Yiting
91 rdf:type schema:Person
92 Nc235cdfe215b49108197f9c4e97f101e schema:name dimensions_id
93 schema:value pub.1110953303
94 rdf:type schema:PropertyValue
95 Ndfb2d279edac484db16e63e70d8dcb61 rdf:first sg:person.013260235055.75
96 rdf:rest rdf:nil
97 Ne6cb78ba9c4b4effa990060b6ad02439 rdf:first sg:person.01302763032.08
98 rdf:rest N75a65fad67dd4836958ca813b7c0d22e
99 Ne6da5f5b17f0469098e7bfc3daff53e5 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
100 schema:familyName Zhu
101 schema:givenName Ying
102 rdf:type schema:Person
103 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
104 schema:name Environmental Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
107 schema:name Environmental Science and Management
108 rdf:type schema:DefinedTerm
109 sg:journal.1047739 schema:issn 2095-0195
110 2095-0209
111 schema:name Frontiers of Earth Science
112 rdf:type schema:Periodical
113 sg:person.011171031044.30 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
114 schema:familyName Liu
115 schema:givenName Yongjuan
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171031044.30
117 rdf:type schema:Person
118 sg:person.012103277727.39 schema:affiliation https://www.grid.ac/institutes/grid.260474.3
119 schema:familyName Li
120 schema:givenName Jilong
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103277727.39
122 rdf:type schema:Person
123 sg:person.01302763032.08 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
124 schema:familyName Fang
125 schema:givenName Xuan
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302763032.08
127 rdf:type schema:Person
128 sg:person.013260235055.75 schema:affiliation https://www.grid.ac/institutes/grid.260474.3
129 schema:familyName Li
130 schema:givenName Fayuan
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260235055.75
132 rdf:type schema:Person
133 sg:person.013733037575.59 schema:affiliation https://www.grid.ac/institutes/grid.260474.3
134 schema:familyName Tang
135 schema:givenName Guoan
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733037575.59
137 rdf:type schema:Person
138 sg:person.016416027527.61 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
139 schema:familyName Cao
140 schema:givenName Jianjun
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416027527.61
142 rdf:type schema:Person
143 sg:pub.10.1007/978-1-4020-8709-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028014635
144 https://doi.org/10.1007/978-1-4020-8709-7
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf02312510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046419639
147 https://doi.org/10.1007/bf02312510
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf02826705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030574403
150 https://doi.org/10.1007/bf02826705
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bf02883721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047603148
153 https://doi.org/10.1007/bf02883721
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11707-015-0519-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019371691
156 https://doi.org/10.1007/s11707-015-0519-2
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s12145-016-0275-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034500957
159 https://doi.org/10.1007/s12145-016-0275-1
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s12665-013-2686-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039336865
162 https://doi.org/10.1007/s12665-013-2686-3
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/357680a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030930977
165 https://doi.org/10.1038/357680a0
166 rdf:type schema:CreativeWork
167 https://app.dimensions.ai/details/publication/pub.1028014635 schema:CreativeWork
168 https://doi.org/10.1002/esp.1873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044762947
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/esp.3899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036185716
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/ldr.2246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029815737
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0031-0182(96)88700-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006714882
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/0031-8663(81)90003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041878513
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0098-3004(95)00104-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010837991
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/0169-555x(95)00141-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1010798311
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.cageo.2012.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036672250
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.catena.2005.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048274755
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.catena.2014.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001529727
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.earscirev.2013.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020388543
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.geomorph.2012.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022783
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.geomorph.2014.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035748739
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.jhydrol.2016.01.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043109596
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.patrec.2003.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048821775
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.scitotenv.2016.08.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012362136
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.still.2006.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010349391
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.still.2015.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047684075
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1029/2007jf000866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045427058
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1080/00423110802167466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009444645
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1080/13658816.2012.739690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025522010
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1098/rspa.1998.0193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048418364
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1098/rspa.2003.1221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045430544
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/j.1440-1738.2006.00524.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039422715
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1111/j.1467-8306.1975.tb01058.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018370046
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/tgis.12277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085133157
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1127/0372-8854/2013/0110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062697735
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049350317
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1130/0091-7613(1994)022<0163:hfit>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047737790
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1142/9789812703347_0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088721887
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1142/s1793536909000047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063022921
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1146/annurev-earth-063016-020552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091506252
231 rdf:type schema:CreativeWork
232 https://doi.org/10.3390/ijgi6050141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085106506
233 rdf:type schema:CreativeWork
234 https://doi.org/10.3724/sp.j.1047.2009.00753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071329991
235 rdf:type schema:CreativeWork
236 https://www.grid.ac/institutes/grid.260474.3 schema:alternateName Nanjing Normal University
237 schema:name Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, 210023, Nanjing, China
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.440845.9 schema:alternateName Nanjing Xiaozhuang University
240 schema:name Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, 210023, Nanjing, China
241 School of Environment Science, Nanjing Xiaozhuang University, 211171, Nanjing, China
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...