Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Yongfeng Wang, Zhaohui Xue, Jun Chen, Guangzhou Chen

ABSTRACT

Phenology has become a good indicator for illustrating the long-term changes in the natural resources of the Yangtze River Delta. However, two issues can be observed from previous studies. On the one hand, existing time-series classification methods mainly using a single classifier, the discrimination power, can become deteriorated due to fluctuations characterizing the time series. On the other hand, previous work on the Yangtze River Delta was limited in the spatial domain (usually to 16 cities) and in the temporal domain (usually 2000–2010). To address these issues, this study attempts to analyze the spatiotemporal variation in phenology in the Yangtze River Delta (with 26 cities, enlarged by the state council in June 2016), facilitated by classifying the land cover types and extracting the phenological metrics based on Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series collected from 2001 to 2015. First, ensemble learning (EL)-based classifiers are used for land cover classification, where the training samples (a total of 201,597) derived from visual interpretation based on GlobelLand30 are further screened using vertex component analysis (VCA), resulting in 600 samples for training and the remainder for validating. Then, eleven phenological metrics are extracted by TIMESAT (a package name) based on the time series, where a seasonal-trend decomposition procedure based on loess (STL-decomposition) is used to remove spikes and a Savitzky-Golay filter is used for filtering. Finally, the spatio-temporal phenology variation is analyzed by considering the classification maps and the phenological metrics. The experimental results indicate that: 1) random forest (RF) obtains the most accurate classification map (with an overall accuracy higher than 96%); 2) different land cover types illustrate the various seasonalities; 3) the Yangtze River Delta has two obvious regions, i.e., the north and the south parts, resulting from different rainfall, temperature, and ecosystem conditions; 4) the phenology variation over time is not significant in the study area; 5) the correlation between gross spring greenness (GSG) and gross primary productivity (GPP) is very high, indicating the potential use of GSG for assessing the carbon flux. More... »

PAGES

1-19

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11707-018-0713-0

DOI

http://dx.doi.org/10.1007/s11707-018-0713-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106608943


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Anhui Jianzhu University", 
          "id": "https://www.grid.ac/institutes/grid.440647.5", 
          "name": [
            "School of Environment and Engineering, Anhui Jianzhu University, 230022, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yongfeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hohai University", 
          "id": "https://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "School of Earth Sciences and Engineering, Hohai University, 211100, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Zhaohui", 
        "id": "sg:person.013447474227.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447474227.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Jianzhu University", 
          "id": "https://www.grid.ac/institutes/grid.440647.5", 
          "name": [
            "School of Environment and Engineering, Anhui Jianzhu University, 230022, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Jianzhu University", 
          "id": "https://www.grid.ac/institutes/grid.440647.5", 
          "name": [
            "School of Environment and Engineering, Anhui Jianzhu University, 230022, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Guangzhou", 
        "id": "sg:person.015561651227.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561651227.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.14358/pers.70.5.627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001366493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.11.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002622730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2015.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008452111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jamc-d-14-0176.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010442404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11707-012-0321-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010886002", 
          "https://doi.org/10.1007/s11707-012-0321-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11707-012-0321-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010886002", 
          "https://doi.org/10.1007/s11707-012-0321-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2009.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014282857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2008.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014353078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2015.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014619984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs70708883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017797678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018717775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018717775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018717775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018717775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2013.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021997556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8050434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022381410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.02.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022416614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2016.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024709481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2016.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024955409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8050400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027064514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-9326-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027441719", 
          "https://doi.org/10.1007/978-1-4419-9326-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-9326-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027441719", 
          "https://doi.org/10.1007/978-1-4419-9326-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2011.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030611564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(02)00096-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031931019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00267-013-0097-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031960398", 
          "https://doi.org/10.1007/s00267-013-0097-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8010019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032138922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2006.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036264889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040021392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042067830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042067830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042067830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042067830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8010022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042748300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s120404764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043245001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.03.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044079834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2004.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044906601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8030186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046047648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8010010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050382377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053521321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.709601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2013.2294956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061333153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2014.2307091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061333209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2015.2508639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2013.2254108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061359848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2002.802519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061608632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2005.844293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2011.2128330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061611810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2012.2195727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061612365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2014.2318332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061613445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2015.2409195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061613798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2015.2463689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2016.2518167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2016.2520203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1967.1053964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061646286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743675"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Phenology has become a good indicator for illustrating the long-term changes in the natural resources of the Yangtze River Delta. However, two issues can be observed from previous studies. On the one hand, existing time-series classification methods mainly using a single classifier, the discrimination power, can become deteriorated due to fluctuations characterizing the time series. On the other hand, previous work on the Yangtze River Delta was limited in the spatial domain (usually to 16 cities) and in the temporal domain (usually 2000\u20132010). To address these issues, this study attempts to analyze the spatiotemporal variation in phenology in the Yangtze River Delta (with 26 cities, enlarged by the state council in June 2016), facilitated by classifying the land cover types and extracting the phenological metrics based on Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series collected from 2001 to 2015. First, ensemble learning (EL)-based classifiers are used for land cover classification, where the training samples (a total of 201,597) derived from visual interpretation based on GlobelLand30 are further screened using vertex component analysis (VCA), resulting in 600 samples for training and the remainder for validating. Then, eleven phenological metrics are extracted by TIMESAT (a package name) based on the time series, where a seasonal-trend decomposition procedure based on loess (STL-decomposition) is used to remove spikes and a Savitzky-Golay filter is used for filtering. Finally, the spatio-temporal phenology variation is analyzed by considering the classification maps and the phenological metrics. The experimental results indicate that: 1) random forest (RF) obtains the most accurate classification map (with an overall accuracy higher than 96%); 2) different land cover types illustrate the various seasonalities; 3) the Yangtze River Delta has two obvious regions, i.e., the north and the south parts, resulting from different rainfall, temperature, and ecosystem conditions; 4) the phenology variation over time is not significant in the study area; 5) the correlation between gross spring greenness (GSG) and gross primary productivity (GPP) is very high, indicating the potential use of GSG for assessing the carbon flux.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11707-018-0713-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047739", 
        "issn": [
          "2095-0195", 
          "2095-0209"
        ], 
        "name": "Frontiers of Earth Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4da52b8727e3f0faa555df0fad543a0a437971e501b817403724922139aea85b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11707-018-0713-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106608943"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11707-018-0713-0", 
      "https://app.dimensions.ai/details/publication/pub.1106608943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000502.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11707-018-0713-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0713-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0713-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0713-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11707-018-0713-0'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      76 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11707-018-0713-0 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author N89e2dd75819d41d2975a3a8f70855a01
4 schema:citation sg:pub.10.1007/978-1-4419-9326-7
5 sg:pub.10.1007/bf00058655
6 sg:pub.10.1007/bf00994018
7 sg:pub.10.1007/s00267-013-0097-6
8 sg:pub.10.1007/s11707-012-0321-3
9 sg:pub.10.1023/a:1010933404324
10 https://doi.org/10.1016/j.ecolind.2008.05.009
11 https://doi.org/10.1016/j.isprsjprs.2016.02.010
12 https://doi.org/10.1016/j.isprsjprs.2016.03.008
13 https://doi.org/10.1016/j.jag.2015.09.007
14 https://doi.org/10.1016/j.jag.2015.11.009
15 https://doi.org/10.1016/j.rse.2004.03.014
16 https://doi.org/10.1016/j.rse.2006.11.021
17 https://doi.org/10.1016/j.rse.2009.08.014
18 https://doi.org/10.1016/j.rse.2011.12.015
19 https://doi.org/10.1016/j.rse.2013.01.010
20 https://doi.org/10.1016/j.rse.2015.11.015
21 https://doi.org/10.1016/j.rse.2015.11.034
22 https://doi.org/10.1016/j.rse.2015.12.023
23 https://doi.org/10.1016/j.rse.2016.02.010
24 https://doi.org/10.1016/j.rse.2016.02.015
25 https://doi.org/10.1016/j.rse.2016.02.057
26 https://doi.org/10.1016/j.rse.2016.03.039
27 https://doi.org/10.1016/s0034-4257(02)00096-2
28 https://doi.org/10.1109/34.709601
29 https://doi.org/10.1109/jstars.2013.2294956
30 https://doi.org/10.1109/jstars.2014.2307091
31 https://doi.org/10.1109/jstars.2015.2508639
32 https://doi.org/10.1109/lgrs.2013.2254108
33 https://doi.org/10.1109/tgrs.2002.802519
34 https://doi.org/10.1109/tgrs.2005.844293
35 https://doi.org/10.1109/tgrs.2011.2128330
36 https://doi.org/10.1109/tgrs.2012.2195727
37 https://doi.org/10.1109/tgrs.2014.2318332
38 https://doi.org/10.1109/tgrs.2015.2409195
39 https://doi.org/10.1109/tgrs.2015.2463689
40 https://doi.org/10.1109/tgrs.2016.2518167
41 https://doi.org/10.1109/tgrs.2016.2520203
42 https://doi.org/10.1109/tit.1967.1053964
43 https://doi.org/10.1109/tpami.2006.211
44 https://doi.org/10.1109/tpami.2008.79
45 https://doi.org/10.1175/jamc-d-14-0176.1
46 https://doi.org/10.14358/pers.70.5.627
47 https://doi.org/10.3390/rs70708883
48 https://doi.org/10.3390/rs8010010
49 https://doi.org/10.3390/rs8010019
50 https://doi.org/10.3390/rs8010022
51 https://doi.org/10.3390/rs8030186
52 https://doi.org/10.3390/rs8050400
53 https://doi.org/10.3390/rs8050434
54 https://doi.org/10.3390/s120404764
55 schema:datePublished 2019-03
56 schema:datePublishedReg 2019-03-01
57 schema:description Phenology has become a good indicator for illustrating the long-term changes in the natural resources of the Yangtze River Delta. However, two issues can be observed from previous studies. On the one hand, existing time-series classification methods mainly using a single classifier, the discrimination power, can become deteriorated due to fluctuations characterizing the time series. On the other hand, previous work on the Yangtze River Delta was limited in the spatial domain (usually to 16 cities) and in the temporal domain (usually 2000–2010). To address these issues, this study attempts to analyze the spatiotemporal variation in phenology in the Yangtze River Delta (with 26 cities, enlarged by the state council in June 2016), facilitated by classifying the land cover types and extracting the phenological metrics based on Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series collected from 2001 to 2015. First, ensemble learning (EL)-based classifiers are used for land cover classification, where the training samples (a total of 201,597) derived from visual interpretation based on GlobelLand30 are further screened using vertex component analysis (VCA), resulting in 600 samples for training and the remainder for validating. Then, eleven phenological metrics are extracted by TIMESAT (a package name) based on the time series, where a seasonal-trend decomposition procedure based on loess (STL-decomposition) is used to remove spikes and a Savitzky-Golay filter is used for filtering. Finally, the spatio-temporal phenology variation is analyzed by considering the classification maps and the phenological metrics. The experimental results indicate that: 1) random forest (RF) obtains the most accurate classification map (with an overall accuracy higher than 96%); 2) different land cover types illustrate the various seasonalities; 3) the Yangtze River Delta has two obvious regions, i.e., the north and the south parts, resulting from different rainfall, temperature, and ecosystem conditions; 4) the phenology variation over time is not significant in the study area; 5) the correlation between gross spring greenness (GSG) and gross primary productivity (GPP) is very high, indicating the potential use of GSG for assessing the carbon flux.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf sg:journal.1047739
62 schema:name Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015
63 schema:pagination 1-19
64 schema:productId N4446a039295b4744a1d3a8d8fd55b6d0
65 N66bd20ca733842e3b8d7e48bc28785da
66 N70decc6f377e44e18e88635de235eced
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106608943
68 https://doi.org/10.1007/s11707-018-0713-0
69 schema:sdDatePublished 2019-04-10T18:18
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nd53667fce7254c0eb6a7f950b93923a6
72 schema:url http://link.springer.com/10.1007/s11707-018-0713-0
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N4446a039295b4744a1d3a8d8fd55b6d0 schema:name dimensions_id
77 schema:value pub.1106608943
78 rdf:type schema:PropertyValue
79 N66bd20ca733842e3b8d7e48bc28785da schema:name readcube_id
80 schema:value 4da52b8727e3f0faa555df0fad543a0a437971e501b817403724922139aea85b
81 rdf:type schema:PropertyValue
82 N70decc6f377e44e18e88635de235eced schema:name doi
83 schema:value 10.1007/s11707-018-0713-0
84 rdf:type schema:PropertyValue
85 N72d76c59f4c24946bf8c74763f262536 rdf:first sg:person.013447474227.37
86 rdf:rest Na47721650daa4e50ac6ef93df7420b02
87 N775e4b45c3924568bbeec2917dfde2c7 schema:affiliation https://www.grid.ac/institutes/grid.440647.5
88 schema:familyName Wang
89 schema:givenName Yongfeng
90 rdf:type schema:Person
91 N7c18cc38194f48f89249ebe863baa22e rdf:first sg:person.015561651227.06
92 rdf:rest rdf:nil
93 N89e2dd75819d41d2975a3a8f70855a01 rdf:first N775e4b45c3924568bbeec2917dfde2c7
94 rdf:rest N72d76c59f4c24946bf8c74763f262536
95 N9b006d0c5d314836b8e11315b7e2f71a schema:affiliation https://www.grid.ac/institutes/grid.440647.5
96 schema:familyName Chen
97 schema:givenName Jun
98 rdf:type schema:Person
99 Na47721650daa4e50ac6ef93df7420b02 rdf:first N9b006d0c5d314836b8e11315b7e2f71a
100 rdf:rest N7c18cc38194f48f89249ebe863baa22e
101 Nd53667fce7254c0eb6a7f950b93923a6 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
104 schema:name Environmental Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
107 schema:name Environmental Science and Management
108 rdf:type schema:DefinedTerm
109 sg:journal.1047739 schema:issn 2095-0195
110 2095-0209
111 schema:name Frontiers of Earth Science
112 rdf:type schema:Periodical
113 sg:person.013447474227.37 schema:affiliation https://www.grid.ac/institutes/grid.257065.3
114 schema:familyName Xue
115 schema:givenName Zhaohui
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447474227.37
117 rdf:type schema:Person
118 sg:person.015561651227.06 schema:affiliation https://www.grid.ac/institutes/grid.440647.5
119 schema:familyName Chen
120 schema:givenName Guangzhou
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561651227.06
122 rdf:type schema:Person
123 sg:pub.10.1007/978-1-4419-9326-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027441719
124 https://doi.org/10.1007/978-1-4419-9326-7
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
127 https://doi.org/10.1007/bf00058655
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
130 https://doi.org/10.1007/bf00994018
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00267-013-0097-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031960398
133 https://doi.org/10.1007/s00267-013-0097-6
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11707-012-0321-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010886002
136 https://doi.org/10.1007/s11707-012-0321-3
137 rdf:type schema:CreativeWork
138 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
139 https://doi.org/10.1023/a:1010933404324
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ecolind.2008.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014353078
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.isprsjprs.2016.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024955409
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.isprsjprs.2016.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024709481
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jag.2015.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008452111
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jag.2015.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014619984
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.rse.2004.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044906601
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.rse.2006.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036264889
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.rse.2009.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014282857
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.rse.2011.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030611564
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.rse.2013.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021997556
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.rse.2015.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018717775
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.rse.2015.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002622730
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.rse.2015.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053521321
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.rse.2016.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042067830
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.rse.2016.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040021392
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.rse.2016.02.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022416614
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.rse.2016.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044079834
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0034-4257(02)00096-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031931019
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/34.709601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156844
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/jstars.2013.2294956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061333153
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/jstars.2014.2307091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061333209
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/jstars.2015.2508639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334047
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/lgrs.2013.2254108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061359848
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tgrs.2002.802519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061608632
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/tgrs.2005.844293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609414
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tgrs.2011.2128330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061611810
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tgrs.2012.2195727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061612365
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tgrs.2014.2318332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613445
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/tgrs.2015.2409195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613798
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/tgrs.2015.2463689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614010
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/tgrs.2016.2518167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614227
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/tgrs.2016.2520203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614234
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/tit.1967.1053964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646286
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tpami.2006.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743046
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tpami.2008.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743675
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1175/jamc-d-14-0176.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010442404
212 rdf:type schema:CreativeWork
213 https://doi.org/10.14358/pers.70.5.627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001366493
214 rdf:type schema:CreativeWork
215 https://doi.org/10.3390/rs70708883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017797678
216 rdf:type schema:CreativeWork
217 https://doi.org/10.3390/rs8010010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050382377
218 rdf:type schema:CreativeWork
219 https://doi.org/10.3390/rs8010019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032138922
220 rdf:type schema:CreativeWork
221 https://doi.org/10.3390/rs8010022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042748300
222 rdf:type schema:CreativeWork
223 https://doi.org/10.3390/rs8030186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046047648
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3390/rs8050400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027064514
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3390/rs8050434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022381410
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3390/s120404764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043245001
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.257065.3 schema:alternateName Hohai University
232 schema:name School of Earth Sciences and Engineering, Hohai University, 211100, Nanjing, China
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.440647.5 schema:alternateName Anhui Jianzhu University
235 schema:name School of Environment and Engineering, Anhui Jianzhu University, 230022, Hefei, China
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...