Robot set-up time in urologic surgery: an opportunity for quality improvement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-02-10

AUTHORS

David J. Kozminski, Matthieu J. Cerf, Paul J. Feustel, Barry A. Kogan

ABSTRACT

IntroductionRobotic-assisted techniques are widespread in urology. However, prolonged preparation time for robotic cases hinders operating room (OR) efficiency and frustrates robotic surgeons. Pre-operative times are an opportunity for quality improvement (QI) and enhancing OR throughput. We have previously shown that pre-operative times in robotic cases are highly variable and that increasing patient complexity was associated with longer times. Our objective was to characterize set-up times in robotic urology cases and to determine whether prolongation was due to robot set-up, in particular.Materials and methodsPatients undergoing robotic-assisted urology procedures at our academic institution had routine peri-operative collection of demographic data and OR time stamps. Following IRB approval, we retrospectively reviewed set-up times from an OR database. Multivariable analysis was used to assess the influence of independent patient variables—gender (M/F), smoking history, age, BMI, American Society of Anesthesiologists (ASA) Physical Status Classification, and Charlson Comorbidity Index (CCI)—on robot set-up times. Institutional factors including procedure, surgeon, and case year were also assessed.ResultsA total of 808 patients undergoing 816 robotic-assisted procedures from 2013 to 2018 met inclusion criteria. Robot set-up times varied only by gender (F > M) but not by general patient complexity. Age, BMI, smoking status, ASA, and CCI did not play a role in prolonging robot set-up times. There was marked variability of robot set-up times, even within procedure type. Robot set-up times generally improved over time for a given surgeon.ConclusionsRobot set-up time is not affected by patient complexity, in contrast to pre-operative time. It is affected by procedure type and does improve with experience. There is wide variability of robot set-up times and this is an important target for surgical QI. More... »

PAGES

745-752

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11701-020-01049-8

DOI

http://dx.doi.org/10.1007/s11701-020-01049-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1124799366

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32040816


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Operating Rooms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Operative Time", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Preoperative Period", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality Improvement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality of Health Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Robotic Surgical Procedures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Urologic Surgical Procedures", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Urology, Department of Surgery, Albany Medical College, Albany Medical Center, Albany, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.413558.e", 
          "name": [
            "Division of Urology, Department of Surgery, Albany Medical College, Albany Medical Center, Albany, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozminski", 
        "givenName": "David J.", 
        "id": "sg:person.013566406743.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013566406743.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Data Analytics Group, Albany Medical Center, Albany, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.413558.e", 
          "name": [
            "Health Data Analytics Group, Albany Medical Center, Albany, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cerf", 
        "givenName": "Matthieu J.", 
        "id": "sg:person.07632447760.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07632447760.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.413558.e", 
          "name": [
            "Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feustel", 
        "givenName": "Paul J.", 
        "id": "sg:person.014346332357.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346332357.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Urology, Department of Surgery, Albany Medical College, Albany Medical Center, Albany, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.413558.e", 
          "name": [
            "Division of Urology, Department of Surgery, Albany Medical College, Albany Medical Center, Albany, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kogan", 
        "givenName": "Barry A.", 
        "id": "sg:person.01257435113.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257435113.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00464-015-4671-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027353310", 
          "https://doi.org/10.1007/s00464-015-4671-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-017-3936-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084020333", 
          "https://doi.org/10.1007/s00268-017-3936-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-02-10", 
    "datePublishedReg": "2020-02-10", 
    "description": "IntroductionRobotic-assisted techniques are widespread in urology. However, prolonged preparation time for robotic cases hinders operating room (OR) efficiency and frustrates robotic surgeons. Pre-operative times are an opportunity for quality improvement (QI) and enhancing OR throughput. We have previously shown that pre-operative times in robotic cases are highly variable and that increasing patient complexity was associated with longer times. Our objective was to characterize set-up times in robotic urology cases and to determine whether prolongation was due to robot set-up, in particular.Materials and methodsPatients undergoing robotic-assisted urology procedures at our academic institution had routine peri-operative collection of demographic data and OR time stamps. Following IRB approval, we retrospectively reviewed set-up times from an OR database. Multivariable analysis was used to assess the influence of independent patient variables\u2014gender (M/F), smoking history, age, BMI, American Society of Anesthesiologists (ASA) Physical Status Classification, and Charlson Comorbidity Index (CCI)\u2014on robot set-up times. Institutional factors including procedure, surgeon, and case year were also assessed.ResultsA total of 808 patients undergoing 816 robotic-assisted procedures from 2013 to 2018 met inclusion criteria. Robot set-up times varied only by gender (F\u2009>\u2009M) but not by general patient complexity. Age, BMI, smoking status, ASA, and CCI did not play a role in prolonging robot set-up times. There was marked variability of robot set-up times, even within procedure type. Robot set-up times generally improved over time for a given surgeon.ConclusionsRobot set-up time is not affected by patient complexity, in contrast to pre-operative time. It is affected by procedure type and does improve with experience. There is wide variability of robot set-up times and this is an important target for surgical QI.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11701-020-01049-8", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1038416", 
        "issn": [
          "1863-2483", 
          "1863-2491"
        ], 
        "name": "Journal of Robotic Surgery", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "robot", 
      "time stamps", 
      "complexity", 
      "quality improvement", 
      "robotic surgeons", 
      "set", 
      "throughput", 
      "classification", 
      "academic institutions", 
      "database", 
      "status classification", 
      "surgical quality improvement", 
      "time", 
      "collection", 
      "opportunities", 
      "stamp", 
      "improvement", 
      "long time", 
      "technique", 
      "efficiency", 
      "robotic-assisted procedures", 
      "robotic cases", 
      "data", 
      "preparation time", 
      "room efficiency", 
      "operating room efficiency", 
      "patient complexity", 
      "procedure", 
      "experience", 
      "objective", 
      "types", 
      "cases", 
      "criteria", 
      "analysis", 
      "urologic surgery", 
      "institutions", 
      "society", 
      "target", 
      "variability", 
      "years", 
      "wide variability", 
      "surgeons", 
      "index", 
      "role", 
      "IRB approval", 
      "factors", 
      "contrast", 
      "status", 
      "CCI", 
      "Anesthesiologists physical status classification", 
      "demographic data", 
      "approval", 
      "urology", 
      "independent patients", 
      "influence", 
      "important target", 
      "history", 
      "institutional factors", 
      "physical status classification", 
      "materials", 
      "gender", 
      "pre-operative time", 
      "patients", 
      "total", 
      "procedure type", 
      "age", 
      "Charlson Comorbidity Index", 
      "ASA", 
      "surgery", 
      "multivariable analysis", 
      "comorbidity index", 
      "ResultsA total", 
      "inclusion criteria", 
      "smoking status", 
      "urology cases", 
      "urology procedures", 
      "BMI", 
      "American Society", 
      "cases years", 
      "MethodsPatients", 
      "ConclusionsRobot", 
      "prolongation", 
      "prolonged preparation time"
    ], 
    "name": "Robot set-up time in urologic surgery: an opportunity for quality improvement", 
    "pagination": "745-752", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1124799366"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11701-020-01049-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32040816"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11701-020-01049-8", 
      "https://app.dimensions.ai/details/publication/pub.1124799366"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_844.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11701-020-01049-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11701-020-01049-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11701-020-01049-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11701-020-01049-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11701-020-01049-8'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      125 URIs      115 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11701-020-01049-8 schema:about N4b3a67d655f64851b6aad03547e8eac1
2 N4fb6c89a47a44b9085aa18ffa511b0a5
3 N559b2c33314c468a841b593aa6ab9436
4 N7a83ef739e99461bbff18b8e46466a96
5 N8da6a407f11648ce96c3aa001364766c
6 N92e596a8e40f42aa9d02f713eabbc3b2
7 Na3a4daee37e14a15b9038fb43a5fa487
8 Nb607168d36b24e0d83fc52441b2414ed
9 Nbc29d121257343d9af5d561af6856334
10 Nbe63f2a024de4ce296f06ca1b1cbf7b7
11 Nc70e6e342c19474b95f05decc90f0b6d
12 Nf337b20ef7a7451581af98642ef0baea
13 Nf4a97be9b3f8471c81832f148d0620a6
14 Nf5816e4d8a3646ff85ab94ada8fd529c
15 Nfba9182c11c0422aa299b9473140eb53
16 anzsrc-for:08
17 anzsrc-for:0801
18 schema:author N4486fa1403b64518af82dc4b6fd87469
19 schema:citation sg:pub.10.1007/s00268-017-3936-4
20 sg:pub.10.1007/s00464-015-4671-2
21 schema:datePublished 2020-02-10
22 schema:datePublishedReg 2020-02-10
23 schema:description IntroductionRobotic-assisted techniques are widespread in urology. However, prolonged preparation time for robotic cases hinders operating room (OR) efficiency and frustrates robotic surgeons. Pre-operative times are an opportunity for quality improvement (QI) and enhancing OR throughput. We have previously shown that pre-operative times in robotic cases are highly variable and that increasing patient complexity was associated with longer times. Our objective was to characterize set-up times in robotic urology cases and to determine whether prolongation was due to robot set-up, in particular.Materials and methodsPatients undergoing robotic-assisted urology procedures at our academic institution had routine peri-operative collection of demographic data and OR time stamps. Following IRB approval, we retrospectively reviewed set-up times from an OR database. Multivariable analysis was used to assess the influence of independent patient variables—gender (M/F), smoking history, age, BMI, American Society of Anesthesiologists (ASA) Physical Status Classification, and Charlson Comorbidity Index (CCI)—on robot set-up times. Institutional factors including procedure, surgeon, and case year were also assessed.ResultsA total of 808 patients undergoing 816 robotic-assisted procedures from 2013 to 2018 met inclusion criteria. Robot set-up times varied only by gender (F > M) but not by general patient complexity. Age, BMI, smoking status, ASA, and CCI did not play a role in prolonging robot set-up times. There was marked variability of robot set-up times, even within procedure type. Robot set-up times generally improved over time for a given surgeon.ConclusionsRobot set-up time is not affected by patient complexity, in contrast to pre-operative time. It is affected by procedure type and does improve with experience. There is wide variability of robot set-up times and this is an important target for surgical QI.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N1b552e99b962452fa857c5bf05b89213
27 Ne12abcb0a82845d9be9907c295d9052f
28 sg:journal.1038416
29 schema:keywords ASA
30 American Society
31 Anesthesiologists physical status classification
32 BMI
33 CCI
34 Charlson Comorbidity Index
35 ConclusionsRobot
36 IRB approval
37 MethodsPatients
38 ResultsA total
39 academic institutions
40 age
41 analysis
42 approval
43 cases
44 cases years
45 classification
46 collection
47 comorbidity index
48 complexity
49 contrast
50 criteria
51 data
52 database
53 demographic data
54 efficiency
55 experience
56 factors
57 gender
58 history
59 important target
60 improvement
61 inclusion criteria
62 independent patients
63 index
64 influence
65 institutional factors
66 institutions
67 long time
68 materials
69 multivariable analysis
70 objective
71 operating room efficiency
72 opportunities
73 patient complexity
74 patients
75 physical status classification
76 pre-operative time
77 preparation time
78 procedure
79 procedure type
80 prolongation
81 prolonged preparation time
82 quality improvement
83 robot
84 robotic cases
85 robotic surgeons
86 robotic-assisted procedures
87 role
88 room efficiency
89 set
90 smoking status
91 society
92 stamp
93 status
94 status classification
95 surgeons
96 surgery
97 surgical quality improvement
98 target
99 technique
100 throughput
101 time
102 time stamps
103 total
104 types
105 urologic surgery
106 urology
107 urology cases
108 urology procedures
109 variability
110 wide variability
111 years
112 schema:name Robot set-up time in urologic surgery: an opportunity for quality improvement
113 schema:pagination 745-752
114 schema:productId N35aaa1afa4304b10808c81cd3ea7681d
115 N80d43ab8149e4b01adb9127aac14315f
116 Na2db450004d2457f9ff7c77513ac5cb2
117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124799366
118 https://doi.org/10.1007/s11701-020-01049-8
119 schema:sdDatePublished 2022-11-24T21:06
120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
121 schema:sdPublisher Neaa319fb461b461f9f7b4c4784e5245f
122 schema:url https://doi.org/10.1007/s11701-020-01049-8
123 sgo:license sg:explorer/license/
124 sgo:sdDataset articles
125 rdf:type schema:ScholarlyArticle
126 N1b552e99b962452fa857c5bf05b89213 schema:issueNumber 5
127 rdf:type schema:PublicationIssue
128 N35aaa1afa4304b10808c81cd3ea7681d schema:name dimensions_id
129 schema:value pub.1124799366
130 rdf:type schema:PropertyValue
131 N431b0d8230b4440cbc7f76e7ce419325 rdf:first sg:person.014346332357.71
132 rdf:rest N6d86197f988c4436a3f796118daf74af
133 N4486fa1403b64518af82dc4b6fd87469 rdf:first sg:person.013566406743.48
134 rdf:rest Na05aa3730bae4fcaac3f69730bca64db
135 N4b3a67d655f64851b6aad03547e8eac1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Urologic Surgical Procedures
137 rdf:type schema:DefinedTerm
138 N4fb6c89a47a44b9085aa18ffa511b0a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Male
140 rdf:type schema:DefinedTerm
141 N559b2c33314c468a841b593aa6ab9436 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Female
143 rdf:type schema:DefinedTerm
144 N6d86197f988c4436a3f796118daf74af rdf:first sg:person.01257435113.04
145 rdf:rest rdf:nil
146 N7a83ef739e99461bbff18b8e46466a96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Time Factors
148 rdf:type schema:DefinedTerm
149 N80d43ab8149e4b01adb9127aac14315f schema:name pubmed_id
150 schema:value 32040816
151 rdf:type schema:PropertyValue
152 N8da6a407f11648ce96c3aa001364766c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Operating Rooms
154 rdf:type schema:DefinedTerm
155 N92e596a8e40f42aa9d02f713eabbc3b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Quality of Health Care
157 rdf:type schema:DefinedTerm
158 Na05aa3730bae4fcaac3f69730bca64db rdf:first sg:person.07632447760.38
159 rdf:rest N431b0d8230b4440cbc7f76e7ce419325
160 Na2db450004d2457f9ff7c77513ac5cb2 schema:name doi
161 schema:value 10.1007/s11701-020-01049-8
162 rdf:type schema:PropertyValue
163 Na3a4daee37e14a15b9038fb43a5fa487 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Retrospective Studies
165 rdf:type schema:DefinedTerm
166 Nb607168d36b24e0d83fc52441b2414ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Body Mass Index
168 rdf:type schema:DefinedTerm
169 Nbc29d121257343d9af5d561af6856334 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Smoking
171 rdf:type schema:DefinedTerm
172 Nbe63f2a024de4ce296f06ca1b1cbf7b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Operative Time
174 rdf:type schema:DefinedTerm
175 Nc70e6e342c19474b95f05decc90f0b6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Quality Improvement
177 rdf:type schema:DefinedTerm
178 Ne12abcb0a82845d9be9907c295d9052f schema:volumeNumber 14
179 rdf:type schema:PublicationVolume
180 Neaa319fb461b461f9f7b4c4784e5245f schema:name Springer Nature - SN SciGraph project
181 rdf:type schema:Organization
182 Nf337b20ef7a7451581af98642ef0baea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Sex Factors
184 rdf:type schema:DefinedTerm
185 Nf4a97be9b3f8471c81832f148d0620a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Humans
187 rdf:type schema:DefinedTerm
188 Nf5816e4d8a3646ff85ab94ada8fd529c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Robotic Surgical Procedures
190 rdf:type schema:DefinedTerm
191 Nfba9182c11c0422aa299b9473140eb53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Preoperative Period
193 rdf:type schema:DefinedTerm
194 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
195 schema:name Information and Computing Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
198 schema:name Artificial Intelligence and Image Processing
199 rdf:type schema:DefinedTerm
200 sg:journal.1038416 schema:issn 1863-2483
201 1863-2491
202 schema:name Journal of Robotic Surgery
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.01257435113.04 schema:affiliation grid-institutes:grid.413558.e
206 schema:familyName Kogan
207 schema:givenName Barry A.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257435113.04
209 rdf:type schema:Person
210 sg:person.013566406743.48 schema:affiliation grid-institutes:grid.413558.e
211 schema:familyName Kozminski
212 schema:givenName David J.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013566406743.48
214 rdf:type schema:Person
215 sg:person.014346332357.71 schema:affiliation grid-institutes:grid.413558.e
216 schema:familyName Feustel
217 schema:givenName Paul J.
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346332357.71
219 rdf:type schema:Person
220 sg:person.07632447760.38 schema:affiliation grid-institutes:grid.413558.e
221 schema:familyName Cerf
222 schema:givenName Matthieu J.
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07632447760.38
224 rdf:type schema:Person
225 sg:pub.10.1007/s00268-017-3936-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084020333
226 https://doi.org/10.1007/s00268-017-3936-4
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00464-015-4671-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027353310
229 https://doi.org/10.1007/s00464-015-4671-2
230 rdf:type schema:CreativeWork
231 grid-institutes:grid.413558.e schema:alternateName Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
232 Division of Urology, Department of Surgery, Albany Medical College, Albany Medical Center, Albany, NY, USA
233 Health Data Analytics Group, Albany Medical Center, Albany, NY, USA
234 schema:name Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
235 Division of Urology, Department of Surgery, Albany Medical College, Albany Medical Center, Albany, NY, USA
236 Health Data Analytics Group, Albany Medical Center, Albany, NY, USA
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...