Energy-efficient dehydrogenation of methanol in a membrane reactor: a mathematical modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Ekaterina V. Shelepova, Ludmila Yu. Ilina, Aleksey A. Vedyagin

ABSTRACT

A two-dimensional non-isothermal stationary mathematical model of the catalytic membrane reactor for the process of methanol dehydrogenation is described. Copper supported on the carbonaceous support was considered as a catalyst. The reaction of methanol dehydrogenation was thermodynamically conjugated with a reaction of hydrogen oxidation taking place in a shell side of the membrane reactor. The effects of various parameters on the methanol conversion and the methyl formate yield have been calculated with the developed model and discussed. Two different types of heating the gas flow were considered and compared. In the case of conjugated dehydrogenation process, the methyl formate yield reaches 77%, when the reactor outer wall was heated up to 150 °C. When the inlet gas flows in the tube and shell sides were heated up to 100 and 83 °C, correspondingly, the yield was 72%. More... »

PAGES

2617-2629

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11696-018-0491-x

DOI

http://dx.doi.org/10.1007/s11696-018-0491-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103779291


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis", 
          "id": "https://www.grid.ac/institutes/grid.418421.a", 
          "name": [
            "Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shelepova", 
        "givenName": "Ekaterina V.", 
        "id": "sg:person.012737254157.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737254157.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis", 
          "id": "https://www.grid.ac/institutes/grid.418421.a", 
          "name": [
            "Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ilina", 
        "givenName": "Ludmila Yu.", 
        "id": "sg:person.012064600543.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012064600543.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, 630090, Novosibirsk, Russia", 
            "National Research Tomsk Polytechnic University, Lenin av., 30, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vedyagin", 
        "givenName": "Aleksey A.", 
        "id": "sg:person.07676403065.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676403065.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10562-004-0783-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000440525", 
          "https://doi.org/10.1007/s10562-004-0783-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-9953(11)60417-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007743921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(94)80030-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010734926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jngse.2015.11.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011495276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0361521914060032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012983529", 
          "https://doi.org/10.3103/s0361521914060032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-85729-151-6_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013202126", 
          "https://doi.org/10.1007/978-0-85729-151-6_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-85729-151-6_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013202126", 
          "https://doi.org/10.1007/978-0-85729-151-6_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jngse.2015.06.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020839354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-9834(00)81884-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021111910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2009.04.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022517081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0010508213020019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025415956", 
          "https://doi.org/10.1134/s0010508213020019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2006.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028903760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02128102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029603950", 
          "https://doi.org/10.1007/bf02128102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jngse.2016.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033331357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6223(97)00173-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034037219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2011.06.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037078583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02063451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038758689", 
          "https://doi.org/10.1007/bf02063451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02063451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038758689", 
          "https://doi.org/10.1007/bf02063451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01614948408064715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043303973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-9834(00)80720-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046356836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97035-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046909810", 
          "https://doi.org/10.1007/978-3-642-97035-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97035-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046909810", 
          "https://doi.org/10.1007/978-3-642-97035-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0920-5861(95)00115-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047179616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-860x(01)00591-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048658102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02494654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051692106", 
          "https://doi.org/10.1007/bf02494654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/i300015a012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055529356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rc2006v075n11abeh003627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058192852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2017.02.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084059254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11144-017-1214-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085999702", 
          "https://doi.org/10.1007/s11144-017-1214-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11144-017-1214-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085999702", 
          "https://doi.org/10.1007/s11144-017-1214-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ece.2017.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092350397"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "A two-dimensional non-isothermal stationary mathematical model of the catalytic membrane reactor for the process of methanol dehydrogenation is described. Copper supported on the carbonaceous support was considered as a catalyst. The reaction of methanol dehydrogenation was thermodynamically conjugated with a reaction of hydrogen oxidation taking place in a shell side of the membrane reactor. The effects of various parameters on the methanol conversion and the methyl formate yield have been calculated with the developed model and discussed. Two different types of heating the gas flow were considered and compared. In the case of conjugated dehydrogenation process, the methyl formate yield reaches 77%, when the reactor outer wall was heated up to 150 \u00b0C. When the inlet gas flows in the tube and shell sides were heated up to 100 and 83 \u00b0C, correspondingly, the yield was 72%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11696-018-0491-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1006753", 
        "issn": [
          "2585-7290", 
          "0366-6352"
        ], 
        "name": "Chemical Papers", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "name": "Energy-efficient dehydrogenation of methanol in a membrane reactor: a mathematical modeling", 
    "pagination": "2617-2629", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02711cb95592dc8c29f6ab3fe09fc27920204b0c6b7e74bd2cfb79965f63da1a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11696-018-0491-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103779291"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11696-018-0491-x", 
      "https://app.dimensions.ai/details/publication/pub.1103779291"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000564.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11696-018-0491-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11696-018-0491-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11696-018-0491-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11696-018-0491-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11696-018-0491-x'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11696-018-0491-x schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N24c3c1a492b24ce98792e3cd79f3c2d7
4 schema:citation sg:pub.10.1007/978-0-85729-151-6_2
5 sg:pub.10.1007/978-3-642-97035-1
6 sg:pub.10.1007/bf02063451
7 sg:pub.10.1007/bf02128102
8 sg:pub.10.1007/bf02494654
9 sg:pub.10.1007/s10562-004-0783-3
10 sg:pub.10.1007/s11144-017-1214-y
11 sg:pub.10.1134/s0010508213020019
12 sg:pub.10.3103/s0361521914060032
13 https://doi.org/10.1016/0376-7388(94)80030-8
14 https://doi.org/10.1016/0920-5861(95)00115-v
15 https://doi.org/10.1016/j.apsusc.2017.02.220
16 https://doi.org/10.1016/j.cej.2009.04.057
17 https://doi.org/10.1016/j.cej.2011.06.048
18 https://doi.org/10.1016/j.ece.2017.10.003
19 https://doi.org/10.1016/j.jcat.2006.03.018
20 https://doi.org/10.1016/j.jngse.2015.06.052
21 https://doi.org/10.1016/j.jngse.2015.11.028
22 https://doi.org/10.1016/j.jngse.2016.04.002
23 https://doi.org/10.1016/s0008-6223(97)00173-5
24 https://doi.org/10.1016/s0166-9834(00)80720-4
25 https://doi.org/10.1016/s0166-9834(00)81884-9
26 https://doi.org/10.1016/s0926-860x(01)00591-9
27 https://doi.org/10.1016/s1003-9953(11)60417-9
28 https://doi.org/10.1021/i300015a012
29 https://doi.org/10.1070/rc2006v075n11abeh003627
30 https://doi.org/10.1080/01614948408064715
31 schema:datePublished 2018-10
32 schema:datePublishedReg 2018-10-01
33 schema:description A two-dimensional non-isothermal stationary mathematical model of the catalytic membrane reactor for the process of methanol dehydrogenation is described. Copper supported on the carbonaceous support was considered as a catalyst. The reaction of methanol dehydrogenation was thermodynamically conjugated with a reaction of hydrogen oxidation taking place in a shell side of the membrane reactor. The effects of various parameters on the methanol conversion and the methyl formate yield have been calculated with the developed model and discussed. Two different types of heating the gas flow were considered and compared. In the case of conjugated dehydrogenation process, the methyl formate yield reaches 77%, when the reactor outer wall was heated up to 150 °C. When the inlet gas flows in the tube and shell sides were heated up to 100 and 83 °C, correspondingly, the yield was 72%.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N56d137d33006446bb5c16cb42f084263
38 N7e9bcd58f44541ae945d311d3924a268
39 sg:journal.1006753
40 schema:name Energy-efficient dehydrogenation of methanol in a membrane reactor: a mathematical modeling
41 schema:pagination 2617-2629
42 schema:productId N6e9ff62b7314453fbce0332b63874a76
43 Nbff63f1dc88c42b9a63f042903d38fa9
44 Nfb7c6cf119784f40a34d6c77967f5d11
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103779291
46 https://doi.org/10.1007/s11696-018-0491-x
47 schema:sdDatePublished 2019-04-10T19:16
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N70b61aa5ff2b41e991df7ca9de6a0e98
50 schema:url https://link.springer.com/10.1007%2Fs11696-018-0491-x
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N24c3c1a492b24ce98792e3cd79f3c2d7 rdf:first sg:person.012737254157.29
55 rdf:rest N4258cc1442bc4882b310fa45edf7445d
56 N4258cc1442bc4882b310fa45edf7445d rdf:first sg:person.012064600543.44
57 rdf:rest N7f0248062abd4f39a9b306026e4de061
58 N56d137d33006446bb5c16cb42f084263 schema:volumeNumber 72
59 rdf:type schema:PublicationVolume
60 N6e9ff62b7314453fbce0332b63874a76 schema:name dimensions_id
61 schema:value pub.1103779291
62 rdf:type schema:PropertyValue
63 N70b61aa5ff2b41e991df7ca9de6a0e98 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N7e9bcd58f44541ae945d311d3924a268 schema:issueNumber 10
66 rdf:type schema:PublicationIssue
67 N7f0248062abd4f39a9b306026e4de061 rdf:first sg:person.07676403065.91
68 rdf:rest rdf:nil
69 Nbff63f1dc88c42b9a63f042903d38fa9 schema:name readcube_id
70 schema:value 02711cb95592dc8c29f6ab3fe09fc27920204b0c6b7e74bd2cfb79965f63da1a
71 rdf:type schema:PropertyValue
72 Nfb7c6cf119784f40a34d6c77967f5d11 schema:name doi
73 schema:value 10.1007/s11696-018-0491-x
74 rdf:type schema:PropertyValue
75 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
76 schema:name Chemical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
79 schema:name Physical Chemistry (incl. Structural)
80 rdf:type schema:DefinedTerm
81 sg:journal.1006753 schema:issn 0366-6352
82 2585-7290
83 schema:name Chemical Papers
84 rdf:type schema:Periodical
85 sg:person.012064600543.44 schema:affiliation https://www.grid.ac/institutes/grid.418421.a
86 schema:familyName Ilina
87 schema:givenName Ludmila Yu.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012064600543.44
89 rdf:type schema:Person
90 sg:person.012737254157.29 schema:affiliation https://www.grid.ac/institutes/grid.418421.a
91 schema:familyName Shelepova
92 schema:givenName Ekaterina V.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737254157.29
94 rdf:type schema:Person
95 sg:person.07676403065.91 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
96 schema:familyName Vedyagin
97 schema:givenName Aleksey A.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676403065.91
99 rdf:type schema:Person
100 sg:pub.10.1007/978-0-85729-151-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013202126
101 https://doi.org/10.1007/978-0-85729-151-6_2
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-642-97035-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046909810
104 https://doi.org/10.1007/978-3-642-97035-1
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02063451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038758689
107 https://doi.org/10.1007/bf02063451
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02128102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029603950
110 https://doi.org/10.1007/bf02128102
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf02494654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051692106
113 https://doi.org/10.1007/bf02494654
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10562-004-0783-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000440525
116 https://doi.org/10.1007/s10562-004-0783-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11144-017-1214-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085999702
119 https://doi.org/10.1007/s11144-017-1214-y
120 rdf:type schema:CreativeWork
121 sg:pub.10.1134/s0010508213020019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415956
122 https://doi.org/10.1134/s0010508213020019
123 rdf:type schema:CreativeWork
124 sg:pub.10.3103/s0361521914060032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012983529
125 https://doi.org/10.3103/s0361521914060032
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0376-7388(94)80030-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010734926
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0920-5861(95)00115-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1047179616
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.apsusc.2017.02.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084059254
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.cej.2009.04.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022517081
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.cej.2011.06.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037078583
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ece.2017.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092350397
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jcat.2006.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028903760
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jngse.2015.06.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020839354
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jngse.2015.11.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011495276
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jngse.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033331357
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0008-6223(97)00173-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034037219
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0166-9834(00)80720-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046356836
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0166-9834(00)81884-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021111910
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0926-860x(01)00591-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048658102
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s1003-9953(11)60417-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007743921
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/i300015a012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055529356
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1070/rc2006v075n11abeh003627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058192852
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/01614948408064715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043303973
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.27736.37 schema:alternateName Tomsk Polytechnic University
164 schema:name Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, 630090, Novosibirsk, Russia
165 National Research Tomsk Polytechnic University, Lenin av., 30, 634050, Tomsk, Russia
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.418421.a schema:alternateName Boreskov Institute of Catalysis
168 schema:name Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, 630090, Novosibirsk, Russia
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...