Weighting schemes in metabolic graphs for identifying biochemical routes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-03

AUTHORS

S. Ghosh, P. Baloni, S. Vishveshwara, N. Chandra

ABSTRACT

Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes [Formula: see text] fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks. More... »

PAGES

47-57

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11693-013-9128-0

DOI

http://dx.doi.org/10.1007/s11693-013-9128-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006137104

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24592291


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "I.I.Sc. Mathematics Initiative, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghosh", 
        "givenName": "S.", 
        "id": "sg:person.01327134364.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327134364.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Department of Biochemistry, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baloni", 
        "givenName": "P.", 
        "id": "sg:person.01134712044.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134712044.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vishveshwara", 
        "givenName": "S.", 
        "id": "sg:person.01321270220.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321270220.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Department of Biochemistry, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chandra", 
        "givenName": "N.", 
        "id": "sg:person.0772712660.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772712660.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bfgp/eln011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000027864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000856656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/367766.368168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000891687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.1.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001521131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0000881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002033877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002159534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.292.5518.929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004753512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.r800056200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008747466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011471610", 
          "https://doi.org/10.1038/81125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011471610", 
          "https://doi.org/10.1038/81125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013779066", 
          "https://doi.org/10.1038/nrc2817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013779066", 
          "https://doi.org/10.1038/nrc2817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2010.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013947617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2010.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013947617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260361013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015572100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-61779-361-5_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017374025", 
          "https://doi.org/10.1007/978-1-61779-361-5_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.27481-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017672387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd3146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018135367", 
          "https://doi.org/10.1038/nrd3146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd3146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018135367", 
          "https://doi.org/10.1038/nrd3146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m400110-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018718583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020266467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbl022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021392519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1925041.1925054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028707468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-4682-3-42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029290116", 
          "https://doi.org/10.1186/1742-4682-3-42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033932965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.09.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037790807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.09.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037790807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038177541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1631-0691(03)00117-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038352617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1631-0691(03)00117-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038352617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-3-103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046359851", 
          "https://doi.org/10.1186/1752-0509-3-103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dam.2011.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046376737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1239303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052744398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074695313", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03", 
    "datePublishedReg": "2014-03-01", 
    "description": "Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes [Formula: see text] fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11693-013-9128-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038419", 
        "issn": [
          "1872-5325", 
          "1872-5333"
        ], 
        "name": "Systems and Synthetic Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Weighting schemes in metabolic graphs for identifying biochemical routes", 
    "pagination": "47-57", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1d3bf00b0d8236605f4c7e7306b2720785fd88c6bc80cf1f3f810956e213ff77"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24592291"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101300404"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11693-013-9128-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006137104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11693-013-9128-0", 
      "https://app.dimensions.ai/details/publication/pub.1006137104"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11693-013-9128-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11693-013-9128-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11693-013-9128-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11693-013-9128-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11693-013-9128-0'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11693-013-9128-0 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N7183f0e7b5b74493ae144e1315d265f9
4 schema:citation sg:pub.10.1007/978-1-61779-361-5_6
5 sg:pub.10.1038/81125
6 sg:pub.10.1038/nrc2817
7 sg:pub.10.1038/nrd3146
8 sg:pub.10.1186/1742-4682-3-42
9 sg:pub.10.1186/1752-0509-3-103
10 https://app.dimensions.ai/details/publication/pub.1074695313
11 https://doi.org/10.1002/bit.260361013
12 https://doi.org/10.1016/j.dam.2011.09.019
13 https://doi.org/10.1016/j.jmb.2005.09.079
14 https://doi.org/10.1016/s1631-0691(03)00117-3
15 https://doi.org/10.1038/msb.2010.18
16 https://doi.org/10.1074/jbc.r800056200
17 https://doi.org/10.1074/mcp.m400110-mcp200
18 https://doi.org/10.1093/bfgp/eln011
19 https://doi.org/10.1093/bib/bbl022
20 https://doi.org/10.1093/bioinformatics/18.suppl_1.s233
21 https://doi.org/10.1093/nar/27.1.29
22 https://doi.org/10.1093/nar/gki437
23 https://doi.org/10.1093/nar/gkp889
24 https://doi.org/10.1093/nar/gkq1089
25 https://doi.org/10.1099/mic.0.27481-0
26 https://doi.org/10.1101/gr.1239303
27 https://doi.org/10.1126/science.292.5518.929
28 https://doi.org/10.1145/1925041.1925054
29 https://doi.org/10.1145/367766.368168
30 https://doi.org/10.1371/journal.pcbi.1003126
31 https://doi.org/10.1371/journal.pone.0000881
32 schema:datePublished 2014-03
33 schema:datePublishedReg 2014-03-01
34 schema:description Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes [Formula: see text] fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N10f7d82025cc4bf89b4e67ed8849db15
39 N528e425b59724894bab2e753af436358
40 sg:journal.1038419
41 schema:name Weighting schemes in metabolic graphs for identifying biochemical routes
42 schema:pagination 47-57
43 schema:productId N00767fc55ca14c0db4d25d407c40936e
44 N410324986d4045cf8aeb71e53e380c46
45 N5d1940a0202f4c70aaab0b2e6d517561
46 N8b11be8f9c0c49439ec4101f6886958c
47 Nd3f84bc62ba34bf98b44dcc762c6df7d
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006137104
49 https://doi.org/10.1007/s11693-013-9128-0
50 schema:sdDatePublished 2019-04-11T00:18
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nee37fd7e89b04b51a4c4b961c47f795b
53 schema:url http://link.springer.com/10.1007%2Fs11693-013-9128-0
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N00767fc55ca14c0db4d25d407c40936e schema:name readcube_id
58 schema:value 1d3bf00b0d8236605f4c7e7306b2720785fd88c6bc80cf1f3f810956e213ff77
59 rdf:type schema:PropertyValue
60 N10f7d82025cc4bf89b4e67ed8849db15 schema:volumeNumber 8
61 rdf:type schema:PublicationVolume
62 N410324986d4045cf8aeb71e53e380c46 schema:name dimensions_id
63 schema:value pub.1006137104
64 rdf:type schema:PropertyValue
65 N528e425b59724894bab2e753af436358 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N5d1940a0202f4c70aaab0b2e6d517561 schema:name doi
68 schema:value 10.1007/s11693-013-9128-0
69 rdf:type schema:PropertyValue
70 N7183f0e7b5b74493ae144e1315d265f9 rdf:first sg:person.01327134364.14
71 rdf:rest Nd7a50b16529140dcb1c154aaa5444882
72 N8b11be8f9c0c49439ec4101f6886958c schema:name pubmed_id
73 schema:value 24592291
74 rdf:type schema:PropertyValue
75 Na9809de3eec846ebb61b894c1eae4856 rdf:first sg:person.0772712660.54
76 rdf:rest rdf:nil
77 Nc9902c373497480a9b0a296476b12224 rdf:first sg:person.01321270220.41
78 rdf:rest Na9809de3eec846ebb61b894c1eae4856
79 Nd3f84bc62ba34bf98b44dcc762c6df7d schema:name nlm_unique_id
80 schema:value 101300404
81 rdf:type schema:PropertyValue
82 Nd7a50b16529140dcb1c154aaa5444882 rdf:first sg:person.01134712044.55
83 rdf:rest Nc9902c373497480a9b0a296476b12224
84 Nee37fd7e89b04b51a4c4b961c47f795b schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
87 schema:name Biological Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
90 schema:name Genetics
91 rdf:type schema:DefinedTerm
92 sg:journal.1038419 schema:issn 1872-5325
93 1872-5333
94 schema:name Systems and Synthetic Biology
95 rdf:type schema:Periodical
96 sg:person.01134712044.55 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
97 schema:familyName Baloni
98 schema:givenName P.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134712044.55
100 rdf:type schema:Person
101 sg:person.01321270220.41 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
102 schema:familyName Vishveshwara
103 schema:givenName S.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321270220.41
105 rdf:type schema:Person
106 sg:person.01327134364.14 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
107 schema:familyName Ghosh
108 schema:givenName S.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327134364.14
110 rdf:type schema:Person
111 sg:person.0772712660.54 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
112 schema:familyName Chandra
113 schema:givenName N.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772712660.54
115 rdf:type schema:Person
116 sg:pub.10.1007/978-1-61779-361-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017374025
117 https://doi.org/10.1007/978-1-61779-361-5_6
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/81125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011471610
120 https://doi.org/10.1038/81125
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nrc2817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013779066
123 https://doi.org/10.1038/nrc2817
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nrd3146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018135367
126 https://doi.org/10.1038/nrd3146
127 rdf:type schema:CreativeWork
128 sg:pub.10.1186/1742-4682-3-42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029290116
129 https://doi.org/10.1186/1742-4682-3-42
130 rdf:type schema:CreativeWork
131 sg:pub.10.1186/1752-0509-3-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046359851
132 https://doi.org/10.1186/1752-0509-3-103
133 rdf:type schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1074695313 schema:CreativeWork
135 https://doi.org/10.1002/bit.260361013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015572100
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.dam.2011.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046376737
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jmb.2005.09.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037790807
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s1631-0691(03)00117-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038352617
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1038/msb.2010.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013947617
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1074/jbc.r800056200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008747466
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1074/mcp.m400110-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018718583
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/bfgp/eln011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000027864
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/bib/bbl022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021392519
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/bioinformatics/18.suppl_1.s233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038177541
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/nar/27.1.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001521131
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1093/nar/gki437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000856656
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/nar/gkp889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033932965
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/nar/gkq1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020266467
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1099/mic.0.27481-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017672387
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1126/science.292.5518.929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004753512
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1145/1925041.1925054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028707468
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1145/367766.368168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000891687
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1371/journal.pcbi.1003126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159534
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1371/journal.pone.0000881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002033877
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.34980.36 schema:alternateName Indian Institute of Science Bangalore
178 schema:name Department of Biochemistry, Indian Institute of Science, 560012, Bangalore, India
179 I.I.Sc. Mathematics Initiative, Indian Institute of Science, 560012, Bangalore, India
180 Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, India
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...