Associations between Mycobacterium tuberculosis Beijing genotype and drug resistance to four first-line drugs: a survey in China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12-29

AUTHORS

Haican Liu, Yuanyuan Zhang, Zhiguang Liu, Jinghua Liu, Yolande Hauck, Jiao Liu, Haiyan Dong, Jie Liu, Xiuqin Zhao, Bing Lu, Yi Jiang, Gilles Vergnaud, Christine Pourcel, Kanglin Wan

ABSTRACT

Investigations on the genetic diversity of Mycobacterium tuberculosis in China have shown that Beijing genotype strains play a dominant role. To study the association between the M. tuberculosis Beijing genotype and the drug-resistance phenotype, 1286 M. tuberculosis clinical isolates together with epidemiological and clinical information of patients were collected from the center for tuberculosis (TB) prevention and control or TB hospitals in Beijing municipality and nine provinces or autonomous regions in China. Drug resistance testing was conducted on all the isolates to the four first-line anti-TB drugs (isoniazid, rifampicin, streptomycin, and ethambutol). A total of 585 strains were found to be resistant to at least one of the four anti-TB drugs. The Beijing family strains consisted of 499 (53.20%) drug-sensitive strains and 439 (46.80%) drug-resistant strains, whereas the non-Beijing family strains comprised 202 (58.05%) drug-sensitive strains and 146 (41.95%) drug-resistant strains. No significant difference was observed in prevalence (χ2= 2.41, P > 0.05) between the drug-resistant and drugsensitive strains among the Beijing family strains. Analysis of monoresistance, multidrug-resistant TB, and geographic distribution of drug resistance did not find any relationships between the M. tuberculosis Beijing genotype and drug-resistance phenotype in China. Results confirmed that the Beijing genotype, the predominant M. tuberculosis genotype in China, was not associated with drug resistance. More... »

PAGES

92-97

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11684-017-0610-z

DOI

http://dx.doi.org/10.1007/s11684-017-0610-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100111469

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29288283


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antitubercular Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Multiple, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Sensitivity Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tuberculosis, Multidrug-Resistant", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.508381.7", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Haican", 
        "id": "sg:person.0764715101.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764715101.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.508381.7", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yuanyuan", 
        "id": "sg:person.0633345400.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633345400.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.508381.7", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhiguang", 
        "id": "sg:person.01343537233.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343537233.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de G\u00e9n\u00e9tique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.462411.4", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
            "Institut de G\u00e9n\u00e9tique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jinghua", 
        "id": "sg:person.0633370204.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633370204.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de G\u00e9n\u00e9tique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.462411.4", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
            "Institut de G\u00e9n\u00e9tique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hauck", 
        "givenName": "Yolande", 
        "id": "sg:person.0717765714.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717765714.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology and Health Statistics, Public Health of Central South University, 421001, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
            "Department of Epidemiology and Health Statistics, Public Health of Central South University, 421001, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiao", 
        "id": "sg:person.01046134042.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046134042.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.508381.7", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Haiyan", 
        "id": "sg:person.01126347225.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126347225.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.508381.7", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jie", 
        "id": "sg:person.0731705442.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731705442.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.508381.7", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xiuqin", 
        "id": "sg:person.01207241666.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207241666.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.508381.7", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Bing", 
        "id": "sg:person.01310426252.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310426252.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.508381.7", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Yi", 
        "id": "sg:person.01016216207.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016216207.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DGA/MRIS-Mission pour la Recherche et l\u2019Innovation Scientifique, Bagneux, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institut de G\u00e9n\u00e9tique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France", 
            "DGA/MRIS-Mission pour la Recherche et l\u2019Innovation Scientifique, Bagneux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vergnaud", 
        "givenName": "Gilles", 
        "id": "sg:person.01366533021.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366533021.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de G\u00e9n\u00e9tique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.462411.4", 
          "name": [
            "Institut de G\u00e9n\u00e9tique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pourcel", 
        "givenName": "Christine", 
        "id": "sg:person.01021627421.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021627421.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNRS, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
            "Institut de G\u00e9n\u00e9tique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France", 
            "CNRS, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wan", 
        "givenName": "Kanglin", 
        "id": "sg:person.0701533325.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701533325.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1465-9921-6-134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038517518", 
          "https://doi.org/10.1186/1465-9921-6-134"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-29", 
    "datePublishedReg": "2017-12-29", 
    "description": "Investigations on the genetic diversity of Mycobacterium tuberculosis in China have shown that Beijing genotype strains play a dominant role. To study the association between the M. tuberculosis Beijing genotype and the drug-resistance phenotype, 1286 M. tuberculosis clinical isolates together with epidemiological and clinical information of patients were collected from the center for tuberculosis (TB) prevention and control or TB hospitals in Beijing municipality and nine provinces or autonomous regions in China. Drug resistance testing was conducted on all the isolates to the four first-line anti-TB drugs (isoniazid, rifampicin, streptomycin, and ethambutol). A total of 585 strains were found to be resistant to at least one of the four anti-TB drugs. The Beijing family strains consisted of 499 (53.20%) drug-sensitive strains and 439 (46.80%) drug-resistant strains, whereas the non-Beijing family strains comprised 202 (58.05%) drug-sensitive strains and 146 (41.95%) drug-resistant strains. No significant difference was observed in prevalence (\u03c72= 2.41, P > 0.05) between the drug-resistant and drugsensitive strains among the Beijing family strains. Analysis of monoresistance, multidrug-resistant TB, and geographic distribution of drug resistance did not find any relationships between the M. tuberculosis Beijing genotype and drug-resistance phenotype in China. Results confirmed that the Beijing genotype, the predominant M. tuberculosis genotype in China, was not associated with drug resistance.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11684-017-0610-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039390", 
        "issn": [
          "2095-0217", 
          "2095-0225"
        ], 
        "name": "Frontiers of Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "anti-TB drugs", 
      "drug-resistant strains", 
      "tuberculosis Beijing genotype", 
      "drug-sensitive strains", 
      "Beijing genotype", 
      "drug-resistance phenotype", 
      "Beijing family", 
      "drug resistance", 
      "first-line anti-TB drugs", 
      "multidrug-resistant TB", 
      "first-line drugs", 
      "drug resistance testing", 
      "Mycobacterium tuberculosis Beijing genotype", 
      "Beijing genotype strains", 
      "tuberculosis prevention", 
      "TB hospital", 
      "tuberculosis genotypes", 
      "clinical information", 
      "resistance testing", 
      "Mycobacterium tuberculosis", 
      "significant differences", 
      "drugs", 
      "genotype strains", 
      "tuberculosis", 
      "association", 
      "genotypes", 
      "monoresistance", 
      "phenotype", 
      "patients", 
      "hospital", 
      "prevalence", 
      "prevention", 
      "total", 
      "resistance", 
      "strains", 
      "TB", 
      "family", 
      "isolates", 
      "control", 
      "differences", 
      "testing", 
      "role", 
      "center", 
      "survey", 
      "geographic distribution", 
      "relationship", 
      "Autonomous Region", 
      "investigation", 
      "results", 
      "analysis", 
      "information", 
      "region", 
      "dominant role", 
      "municipalities", 
      "Province", 
      "China", 
      "distribution", 
      "genetic diversity", 
      "Beijing Municipality", 
      "diversity", 
      "drugsensitive strains", 
      "Analysis of monoresistance"
    ], 
    "name": "Associations between Mycobacterium tuberculosis Beijing genotype and drug resistance to four first-line drugs: a survey in China", 
    "pagination": "92-97", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100111469"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11684-017-0610-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29288283"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11684-017-0610-z", 
      "https://app.dimensions.ai/details/publication/pub.1100111469"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_744.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11684-017-0610-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11684-017-0610-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11684-017-0610-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11684-017-0610-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11684-017-0610-z'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      22 PREDICATES      99 URIs      90 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11684-017-0610-z schema:about N020936be70934078a8b76ae818c9d467
2 N2c1013824f654ea2ba7395cb7cab7d89
3 N3682900360c54988813a6b236368871e
4 N90172b3b0e7f417ea3b04e868175d613
5 N92f324a980cf4711bf6d452a7e0e0be2
6 N93c66d7e25d5457e8e69f8cac933449c
7 Nbe5853de0ed74cf2b3f5e3f0761b52ea
8 Nc51825ee551447199b79202e8ad7d20b
9 Nead9d884220b445c9a168f3efec30af4
10 Neeefcc050af84e8cadef2d2952249665
11 anzsrc-for:11
12 anzsrc-for:1108
13 schema:author Nf6ffb6603dbe4d8fa1a658e29d5913a7
14 schema:citation sg:pub.10.1186/1465-9921-6-134
15 schema:datePublished 2017-12-29
16 schema:datePublishedReg 2017-12-29
17 schema:description Investigations on the genetic diversity of Mycobacterium tuberculosis in China have shown that Beijing genotype strains play a dominant role. To study the association between the M. tuberculosis Beijing genotype and the drug-resistance phenotype, 1286 M. tuberculosis clinical isolates together with epidemiological and clinical information of patients were collected from the center for tuberculosis (TB) prevention and control or TB hospitals in Beijing municipality and nine provinces or autonomous regions in China. Drug resistance testing was conducted on all the isolates to the four first-line anti-TB drugs (isoniazid, rifampicin, streptomycin, and ethambutol). A total of 585 strains were found to be resistant to at least one of the four anti-TB drugs. The Beijing family strains consisted of 499 (53.20%) drug-sensitive strains and 439 (46.80%) drug-resistant strains, whereas the non-Beijing family strains comprised 202 (58.05%) drug-sensitive strains and 146 (41.95%) drug-resistant strains. No significant difference was observed in prevalence (χ2= 2.41, P > 0.05) between the drug-resistant and drugsensitive strains among the Beijing family strains. Analysis of monoresistance, multidrug-resistant TB, and geographic distribution of drug resistance did not find any relationships between the M. tuberculosis Beijing genotype and drug-resistance phenotype in China. Results confirmed that the Beijing genotype, the predominant M. tuberculosis genotype in China, was not associated with drug resistance.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nc32158185bba4edf999b4b61ecd67dd3
22 Ne22c0372260f4b069c78c494c281020e
23 sg:journal.1039390
24 schema:keywords Analysis of monoresistance
25 Autonomous Region
26 Beijing Municipality
27 Beijing family
28 Beijing genotype
29 Beijing genotype strains
30 China
31 Mycobacterium tuberculosis
32 Mycobacterium tuberculosis Beijing genotype
33 Province
34 TB
35 TB hospital
36 analysis
37 anti-TB drugs
38 association
39 center
40 clinical information
41 control
42 differences
43 distribution
44 diversity
45 dominant role
46 drug resistance
47 drug resistance testing
48 drug-resistance phenotype
49 drug-resistant strains
50 drug-sensitive strains
51 drugs
52 drugsensitive strains
53 family
54 first-line anti-TB drugs
55 first-line drugs
56 genetic diversity
57 genotype strains
58 genotypes
59 geographic distribution
60 hospital
61 information
62 investigation
63 isolates
64 monoresistance
65 multidrug-resistant TB
66 municipalities
67 patients
68 phenotype
69 prevalence
70 prevention
71 region
72 relationship
73 resistance
74 resistance testing
75 results
76 role
77 significant differences
78 strains
79 survey
80 testing
81 total
82 tuberculosis
83 tuberculosis Beijing genotype
84 tuberculosis genotypes
85 tuberculosis prevention
86 schema:name Associations between Mycobacterium tuberculosis Beijing genotype and drug resistance to four first-line drugs: a survey in China
87 schema:pagination 92-97
88 schema:productId N273852a092d942f38ca76167f7b7555f
89 N43016f1426554a08a4328986ae7fe0c5
90 Nd89b6aa0eccb4ff19b1119dae285ba05
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100111469
92 https://doi.org/10.1007/s11684-017-0610-z
93 schema:sdDatePublished 2021-11-01T18:31
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Ncd76c4c02b594b05b2015a7fa489b869
96 schema:url https://doi.org/10.1007/s11684-017-0610-z
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N020936be70934078a8b76ae818c9d467 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Antitubercular Agents
102 rdf:type schema:DefinedTerm
103 N0e865b09f4cc4c909151fc36f2871eff rdf:first sg:person.01016216207.63
104 rdf:rest Nadc551a639c047f7ad07387ade07c860
105 N273852a092d942f38ca76167f7b7555f schema:name doi
106 schema:value 10.1007/s11684-017-0610-z
107 rdf:type schema:PropertyValue
108 N2981777d350349518a82269758666b6d rdf:first sg:person.0633345400.45
109 rdf:rest N780db0da629a495b9772537b71090621
110 N2c1013824f654ea2ba7395cb7cab7d89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name China
112 rdf:type schema:DefinedTerm
113 N3682900360c54988813a6b236368871e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Genetic Variation
115 rdf:type schema:DefinedTerm
116 N43016f1426554a08a4328986ae7fe0c5 schema:name dimensions_id
117 schema:value pub.1100111469
118 rdf:type schema:PropertyValue
119 N54d0878226d84349baceb4879cbcdea9 rdf:first sg:person.01207241666.13
120 rdf:rest N5a11cb3783c8433193495f639ff46f9b
121 N5a11cb3783c8433193495f639ff46f9b rdf:first sg:person.01310426252.99
122 rdf:rest N0e865b09f4cc4c909151fc36f2871eff
123 N5a43d3b52d864958b72bc3f38d4509d3 rdf:first sg:person.0731705442.00
124 rdf:rest N54d0878226d84349baceb4879cbcdea9
125 N6fd64b8b2e9e45058579d181219aeb53 rdf:first sg:person.01021627421.49
126 rdf:rest Nccba9c9b77034e8bbf7c10b2cb2020f7
127 N780db0da629a495b9772537b71090621 rdf:first sg:person.01343537233.14
128 rdf:rest Nfac2f581f528487eaf2feabe634257a0
129 N90172b3b0e7f417ea3b04e868175d613 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Humans
131 rdf:type schema:DefinedTerm
132 N92f324a980cf4711bf6d452a7e0e0be2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Genotype
134 rdf:type schema:DefinedTerm
135 N93c66d7e25d5457e8e69f8cac933449c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Tuberculosis, Multidrug-Resistant
137 rdf:type schema:DefinedTerm
138 N9958e51ba1754ec79015749a9fce9b16 rdf:first sg:person.01046134042.37
139 rdf:rest Nb4247341eff1412e812d885e3b6e6647
140 Nadc551a639c047f7ad07387ade07c860 rdf:first sg:person.01366533021.19
141 rdf:rest N6fd64b8b2e9e45058579d181219aeb53
142 Nb4247341eff1412e812d885e3b6e6647 rdf:first sg:person.01126347225.97
143 rdf:rest N5a43d3b52d864958b72bc3f38d4509d3
144 Nbe5853de0ed74cf2b3f5e3f0761b52ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Drug Resistance, Multiple, Bacterial
146 rdf:type schema:DefinedTerm
147 Nc32158185bba4edf999b4b61ecd67dd3 schema:issueNumber 1
148 rdf:type schema:PublicationIssue
149 Nc51825ee551447199b79202e8ad7d20b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Microbial Sensitivity Tests
151 rdf:type schema:DefinedTerm
152 Nccba9c9b77034e8bbf7c10b2cb2020f7 rdf:first sg:person.0701533325.53
153 rdf:rest rdf:nil
154 Ncd76c4c02b594b05b2015a7fa489b869 schema:name Springer Nature - SN SciGraph project
155 rdf:type schema:Organization
156 Nd89b6aa0eccb4ff19b1119dae285ba05 schema:name pubmed_id
157 schema:value 29288283
158 rdf:type schema:PropertyValue
159 Ne22c0372260f4b069c78c494c281020e schema:volumeNumber 12
160 rdf:type schema:PublicationVolume
161 Nead9d884220b445c9a168f3efec30af4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Mycobacterium tuberculosis
163 rdf:type schema:DefinedTerm
164 Neeefcc050af84e8cadef2d2952249665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Phenotype
166 rdf:type schema:DefinedTerm
167 Nf6ffb6603dbe4d8fa1a658e29d5913a7 rdf:first sg:person.0764715101.17
168 rdf:rest N2981777d350349518a82269758666b6d
169 Nf79573cc978e4bdeba3412f5373bf862 rdf:first sg:person.0717765714.79
170 rdf:rest N9958e51ba1754ec79015749a9fce9b16
171 Nfac2f581f528487eaf2feabe634257a0 rdf:first sg:person.0633370204.27
172 rdf:rest Nf79573cc978e4bdeba3412f5373bf862
173 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
174 schema:name Medical and Health Sciences
175 rdf:type schema:DefinedTerm
176 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
177 schema:name Medical Microbiology
178 rdf:type schema:DefinedTerm
179 sg:journal.1039390 schema:issn 2095-0217
180 2095-0225
181 schema:name Frontiers of Medicine
182 schema:publisher Springer Nature
183 rdf:type schema:Periodical
184 sg:person.01016216207.63 schema:affiliation grid-institutes:grid.508381.7
185 schema:familyName Jiang
186 schema:givenName Yi
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016216207.63
188 rdf:type schema:Person
189 sg:person.01021627421.49 schema:affiliation grid-institutes:grid.462411.4
190 schema:familyName Pourcel
191 schema:givenName Christine
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021627421.49
193 rdf:type schema:Person
194 sg:person.01046134042.37 schema:affiliation grid-institutes:grid.216417.7
195 schema:familyName Liu
196 schema:givenName Jiao
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046134042.37
198 rdf:type schema:Person
199 sg:person.01126347225.97 schema:affiliation grid-institutes:grid.508381.7
200 schema:familyName Dong
201 schema:givenName Haiyan
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126347225.97
203 rdf:type schema:Person
204 sg:person.01207241666.13 schema:affiliation grid-institutes:grid.508381.7
205 schema:familyName Zhao
206 schema:givenName Xiuqin
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207241666.13
208 rdf:type schema:Person
209 sg:person.01310426252.99 schema:affiliation grid-institutes:grid.508381.7
210 schema:familyName Lu
211 schema:givenName Bing
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310426252.99
213 rdf:type schema:Person
214 sg:person.01343537233.14 schema:affiliation grid-institutes:grid.508381.7
215 schema:familyName Liu
216 schema:givenName Zhiguang
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343537233.14
218 rdf:type schema:Person
219 sg:person.01366533021.19 schema:affiliation grid-institutes:None
220 schema:familyName Vergnaud
221 schema:givenName Gilles
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366533021.19
223 rdf:type schema:Person
224 sg:person.0633345400.45 schema:affiliation grid-institutes:grid.508381.7
225 schema:familyName Zhang
226 schema:givenName Yuanyuan
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633345400.45
228 rdf:type schema:Person
229 sg:person.0633370204.27 schema:affiliation grid-institutes:grid.462411.4
230 schema:familyName Liu
231 schema:givenName Jinghua
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633370204.27
233 rdf:type schema:Person
234 sg:person.0701533325.53 schema:affiliation grid-institutes:grid.4444.0
235 schema:familyName Wan
236 schema:givenName Kanglin
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701533325.53
238 rdf:type schema:Person
239 sg:person.0717765714.79 schema:affiliation grid-institutes:grid.462411.4
240 schema:familyName Hauck
241 schema:givenName Yolande
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717765714.79
243 rdf:type schema:Person
244 sg:person.0731705442.00 schema:affiliation grid-institutes:grid.508381.7
245 schema:familyName Liu
246 schema:givenName Jie
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731705442.00
248 rdf:type schema:Person
249 sg:person.0764715101.17 schema:affiliation grid-institutes:grid.508381.7
250 schema:familyName Liu
251 schema:givenName Haican
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764715101.17
253 rdf:type schema:Person
254 sg:pub.10.1186/1465-9921-6-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038517518
255 https://doi.org/10.1186/1465-9921-6-134
256 rdf:type schema:CreativeWork
257 grid-institutes:None schema:alternateName DGA/MRIS-Mission pour la Recherche et l’Innovation Scientifique, Bagneux, France
258 schema:name DGA/MRIS-Mission pour la Recherche et l’Innovation Scientifique, Bagneux, France
259 Institut de Génétique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France
260 rdf:type schema:Organization
261 grid-institutes:grid.216417.7 schema:alternateName Department of Epidemiology and Health Statistics, Public Health of Central South University, 421001, Changsha, China
262 schema:name Department of Epidemiology and Health Statistics, Public Health of Central South University, 421001, Changsha, China
263 State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
264 rdf:type schema:Organization
265 grid-institutes:grid.4444.0 schema:alternateName CNRS, Orsay, France
266 schema:name CNRS, Orsay, France
267 Institut de Génétique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France
268 State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
269 rdf:type schema:Organization
270 grid-institutes:grid.462411.4 schema:alternateName Institut de Génétique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France
271 schema:name Institut de Génétique et Microbiologie, UMR, University Paris-Sud, 8621, Orsay, France
272 State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
273 rdf:type schema:Organization
274 grid-institutes:grid.508381.7 schema:alternateName State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
275 schema:name State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...