Subsurface accumulation of CaCO3 and Cl− from groundwater under black locust and poplar plantations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05-18

AUTHORS

András Szabó, Zoltán Gribovszki, Esteban Gabriel Jobbagy, Kitti Balog, András Bidló, Tibor Tóth

ABSTRACT

When conditions are similar, more water evaporates from forest plantations than herbaceous vegetation, thereby affecting hydrological fluxes and ion transport in the soil. The vertical distribution of CaCO3 and Cl− ions shifts due to afforestation. The effect of groundwater depth and clay content were studied in the Great Hungarian Plain where forest area has been increasing for decades by analyzing soil and groundwater samples from stands of black locust (Robinia pseudoacacia, 11 plots) and poplar (Populus spp., 11 plots). All study sites contained one herbaceous (control) and one or more forested plots. CaCO3 and Cl− ions accumulated in the soil profile in greater quantities under tree cover than in the controls. The scale of this process largely depended on the species and on soil and ion properties. Under black locust, Cl− accumulated between 1.3 and 6.3 m, with a maximum difference of 0.3 pCl unit (pCl is Cl− activity, the negative of the logarithm to base 10 of the concentration of the chloride ion, determined using an ion-selective electrode, it is a dimensionless quantity.), while the difference in CaCO3 accumulation was at most 3.5% in some layers, compared to control plots. This result may be explained by the difference in the mobility of Ca+ and Cl− ions. Different mechanisms were noticeable under poplar plantations due to their higher water uptake: Cl− accumulation was detected below 0.9 m to the groundwater with a maximum difference of 0.5 pCl units, while CaCO3 accumulation was continuous at depths of 2.3–6.8 m with a maximum difference of 8.4%, compared to the controls. With increasing clay content, there was a discernible effect on CaCO3 and Cl− accumulation under black locust, but not observed under poplars. These differences were explained by the differences in water uptake mechanisms and root patterns of the two species and the different mobility of Ca2+ and Cl− ions. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11676-018-0700-z

DOI

http://dx.doi.org/10.1007/s11676-018-0700-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104113394


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Forest Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.481832.4", 
          "name": [
            "Forest Research Institute, National Agricultural Research and Innovation Centre, V\u00e1rker\u00fclet 30/A, 9600, S\u00e1rv\u00e1r, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szab\u00f3", 
        "givenName": "Andr\u00e1s", 
        "id": "sg:person.015236244440.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015236244440.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sopron", 
          "id": "https://www.grid.ac/institutes/grid.410548.c", 
          "name": [
            "Institute of Geomatics and Civil Engineering, Faculty of Forestry, University of Sopron, Bajcsy-Zsilinszky u. 4, 9400, Sopron, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gribovszki", 
        "givenName": "Zolt\u00e1n", 
        "id": "sg:person.016274643024.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016274643024.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of San Luis", 
          "id": "https://www.grid.ac/institutes/grid.412115.2", 
          "name": [
            "Grupo de Estudios Ambientales\u2014IMASL, Universidad Nacional de San Luis & CONICET, Ej\u00e9rcito de los Andes 950, D5700HHW, San Luis, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jobbagy", 
        "givenName": "Esteban Gabriel", 
        "id": "sg:person.01324531156.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324531156.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Soil Science and Agricultural Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.425949.7", 
          "name": [
            "Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, HAS, Herman O u. 15, 1022, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balog", 
        "givenName": "Kitti", 
        "id": "sg:person.0765033156.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765033156.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sopron", 
          "id": "https://www.grid.ac/institutes/grid.410548.c", 
          "name": [
            "Institute of Environmental and Earth Sciences, Faculty of Forestry, University of Sopron, Bajcsy-Zsilinszky u. 4, 9400, Sopron, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bidl\u00f3", 
        "givenName": "Andr\u00e1s", 
        "id": "sg:person.01054643677.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054643677.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Soil Science and Agricultural Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.425949.7", 
          "name": [
            "Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, HAS, Herman O u. 15, 1022, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00f3th", 
        "givenName": "Tibor", 
        "id": "sg:person.016470136065.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470136065.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/aobpla/plu054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1002-0160(14)60076-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002798905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eco.1624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004746120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006jg000246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005876062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1923(00)00193-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009188129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3774(98)00076-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012203869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/anbo.2001.1540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015789781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2009.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016955254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2007.10.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017699980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2005.00975.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019731189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2005.00975.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019731189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3774(98)00073-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023410929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/18.8-9.625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029242516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00267-004-0194-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030803036", 
          "https://doi.org/10.1007/s00267-004-0194-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00267-004-0194-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030803036", 
          "https://doi.org/10.1007/s00267-004-0194-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00267-004-0194-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030803036", 
          "https://doi.org/10.1007/s00267-004-0194-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2016.03.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036007457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2016.03.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036007457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007gb003000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036676729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7061(71)90057-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037872860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7061(71)90057-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037872860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0145828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039394552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2016.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040693031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00442-007-0694-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048368467", 
          "https://doi.org/10.1007/s00442-007-0694-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1127(91)90039-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049147909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1127(91)90039-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049147909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11676-016-0339-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054525265", 
          "https://doi.org/10.1007/s11676-016-0339-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11676-016-0339-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054525265", 
          "https://doi.org/10.1007/s11676-016-0339-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1556/agrokem.55.2006.1.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067882776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj2012.0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069052236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/vzj2007.0119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069053943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3832/ifor1864-009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071444389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3832/ifor1864-009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071444389"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05-18", 
    "datePublishedReg": "2018-05-18", 
    "description": "When conditions are similar, more water evaporates from forest plantations than herbaceous vegetation, thereby affecting hydrological fluxes and ion transport in the soil. The vertical distribution of CaCO3 and Cl\u2212 ions shifts due to afforestation. The effect of groundwater depth and clay content were studied in the Great Hungarian Plain where forest area has been increasing for decades by analyzing soil and groundwater samples from stands of black locust (Robinia pseudoacacia, 11 plots) and poplar (Populus spp., 11 plots). All study sites contained one herbaceous (control) and one or more forested plots. CaCO3 and Cl\u2212 ions accumulated in the soil profile in greater quantities under tree cover than in the controls. The scale of this process largely depended on the species and on soil and ion properties. Under black locust, Cl\u2212 accumulated between 1.3 and 6.3 m, with a maximum difference of 0.3 pCl unit (pCl is Cl\u2212 activity, the negative of the logarithm to base 10 of the concentration of the chloride ion, determined using an ion-selective electrode, it is a dimensionless quantity.), while the difference in CaCO3 accumulation was at most 3.5% in some layers, compared to control plots. This result may be explained by the difference in the mobility of Ca+ and Cl\u2212 ions. Different mechanisms were noticeable under poplar plantations due to their higher water uptake: Cl\u2212 accumulation was detected below 0.9 m to the groundwater with a maximum difference of 0.5 pCl units, while CaCO3 accumulation was continuous at depths of 2.3\u20136.8 m with a maximum difference of 8.4%, compared to the controls. With increasing clay content, there was a discernible effect on CaCO3 and Cl\u2212 accumulation under black locust, but not observed under poplars. These differences were explained by the differences in water uptake mechanisms and root patterns of the two species and the different mobility of Ca2+ and Cl\u2212 ions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11676-018-0700-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136234", 
        "issn": [
          "1007-662X", 
          "1993-0607"
        ], 
        "name": "Journal of Forestry Research", 
        "type": "Periodical"
      }
    ], 
    "name": "Subsurface accumulation of CaCO3 and Cl\u2212 from groundwater under black locust and poplar plantations", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9dbfb7d239b309535d43eb20cbf54bfe08794fa8ed79094807d3edee1d52e33a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11676-018-0700-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104113394"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11676-018-0700-z", 
      "https://app.dimensions.ai/details/publication/pub.1104113394"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000564.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11676-018-0700-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11676-018-0700-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11676-018-0700-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11676-018-0700-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11676-018-0700-z'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      49 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11676-018-0700-z schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author N8605e43294e942f7a9cc5896b1bf440b
4 schema:citation sg:pub.10.1007/s00267-004-0194-7
5 sg:pub.10.1007/s00442-007-0694-2
6 sg:pub.10.1007/s11676-016-0339-6
7 https://doi.org/10.1002/eco.1624
8 https://doi.org/10.1006/anbo.2001.1540
9 https://doi.org/10.1016/0016-7061(71)90057-7
10 https://doi.org/10.1016/0378-1127(91)90039-x
11 https://doi.org/10.1016/j.catena.2016.03.005
12 https://doi.org/10.1016/j.jclepro.2016.03.046
13 https://doi.org/10.1016/j.jenvman.2009.03.004
14 https://doi.org/10.1016/j.jhydrol.2007.10.049
15 https://doi.org/10.1016/s0168-1923(00)00193-3
16 https://doi.org/10.1016/s0378-3774(98)00073-0
17 https://doi.org/10.1016/s0378-3774(98)00076-6
18 https://doi.org/10.1016/s1002-0160(14)60076-x
19 https://doi.org/10.1029/2006jg000246
20 https://doi.org/10.1029/2007gb003000
21 https://doi.org/10.1093/aobpla/plu054
22 https://doi.org/10.1093/treephys/18.8-9.625
23 https://doi.org/10.1111/j.1365-2486.2005.00975.x
24 https://doi.org/10.1371/journal.pone.0145828
25 https://doi.org/10.1556/agrokem.55.2006.1.11
26 https://doi.org/10.2136/sssaj2012.0034
27 https://doi.org/10.2136/vzj2007.0119
28 https://doi.org/10.3832/ifor1864-009
29 schema:datePublished 2018-05-18
30 schema:datePublishedReg 2018-05-18
31 schema:description When conditions are similar, more water evaporates from forest plantations than herbaceous vegetation, thereby affecting hydrological fluxes and ion transport in the soil. The vertical distribution of CaCO3 and Cl− ions shifts due to afforestation. The effect of groundwater depth and clay content were studied in the Great Hungarian Plain where forest area has been increasing for decades by analyzing soil and groundwater samples from stands of black locust (Robinia pseudoacacia, 11 plots) and poplar (Populus spp., 11 plots). All study sites contained one herbaceous (control) and one or more forested plots. CaCO3 and Cl− ions accumulated in the soil profile in greater quantities under tree cover than in the controls. The scale of this process largely depended on the species and on soil and ion properties. Under black locust, Cl− accumulated between 1.3 and 6.3 m, with a maximum difference of 0.3 pCl unit (pCl is Cl− activity, the negative of the logarithm to base 10 of the concentration of the chloride ion, determined using an ion-selective electrode, it is a dimensionless quantity.), while the difference in CaCO3 accumulation was at most 3.5% in some layers, compared to control plots. This result may be explained by the difference in the mobility of Ca+ and Cl− ions. Different mechanisms were noticeable under poplar plantations due to their higher water uptake: Cl− accumulation was detected below 0.9 m to the groundwater with a maximum difference of 0.5 pCl units, while CaCO3 accumulation was continuous at depths of 2.3–6.8 m with a maximum difference of 8.4%, compared to the controls. With increasing clay content, there was a discernible effect on CaCO3 and Cl− accumulation under black locust, but not observed under poplars. These differences were explained by the differences in water uptake mechanisms and root patterns of the two species and the different mobility of Ca2+ and Cl− ions.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf sg:journal.1136234
36 schema:name Subsurface accumulation of CaCO3 and Cl− from groundwater under black locust and poplar plantations
37 schema:pagination 1-9
38 schema:productId N78702ec5f6394b81b77370620b2bfef2
39 Na35fdc0694ab496ebe0a693c7fab3379
40 Naeaab2d98d7c44ae89520315ffe98b7f
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104113394
42 https://doi.org/10.1007/s11676-018-0700-z
43 schema:sdDatePublished 2019-04-10T18:28
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Na523952b71124ef08179eba495686fc4
46 schema:url https://link.springer.com/10.1007%2Fs11676-018-0700-z
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N65ac6a00004640ddb776de3f754a5e4d rdf:first sg:person.01324531156.37
51 rdf:rest Nae6b193c889947f49cf2f9b29cd78076
52 N6826564dd7ec4f7b8b64e03447fd66a5 rdf:first sg:person.016470136065.97
53 rdf:rest rdf:nil
54 N74fa6770791d47d9befe1fb069b95de0 rdf:first sg:person.016274643024.81
55 rdf:rest N65ac6a00004640ddb776de3f754a5e4d
56 N78702ec5f6394b81b77370620b2bfef2 schema:name readcube_id
57 schema:value 9dbfb7d239b309535d43eb20cbf54bfe08794fa8ed79094807d3edee1d52e33a
58 rdf:type schema:PropertyValue
59 N8605e43294e942f7a9cc5896b1bf440b rdf:first sg:person.015236244440.99
60 rdf:rest N74fa6770791d47d9befe1fb069b95de0
61 Na35fdc0694ab496ebe0a693c7fab3379 schema:name doi
62 schema:value 10.1007/s11676-018-0700-z
63 rdf:type schema:PropertyValue
64 Na523952b71124ef08179eba495686fc4 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nae6b193c889947f49cf2f9b29cd78076 rdf:first sg:person.0765033156.17
67 rdf:rest Nf8ee453e45084aee87cc01712c2d58df
68 Naeaab2d98d7c44ae89520315ffe98b7f schema:name dimensions_id
69 schema:value pub.1104113394
70 rdf:type schema:PropertyValue
71 Nf8ee453e45084aee87cc01712c2d58df rdf:first sg:person.01054643677.76
72 rdf:rest N6826564dd7ec4f7b8b64e03447fd66a5
73 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
74 schema:name Environmental Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
77 schema:name Soil Sciences
78 rdf:type schema:DefinedTerm
79 sg:journal.1136234 schema:issn 1007-662X
80 1993-0607
81 schema:name Journal of Forestry Research
82 rdf:type schema:Periodical
83 sg:person.01054643677.76 schema:affiliation https://www.grid.ac/institutes/grid.410548.c
84 schema:familyName Bidló
85 schema:givenName András
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054643677.76
87 rdf:type schema:Person
88 sg:person.01324531156.37 schema:affiliation https://www.grid.ac/institutes/grid.412115.2
89 schema:familyName Jobbagy
90 schema:givenName Esteban Gabriel
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324531156.37
92 rdf:type schema:Person
93 sg:person.015236244440.99 schema:affiliation https://www.grid.ac/institutes/grid.481832.4
94 schema:familyName Szabó
95 schema:givenName András
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015236244440.99
97 rdf:type schema:Person
98 sg:person.016274643024.81 schema:affiliation https://www.grid.ac/institutes/grid.410548.c
99 schema:familyName Gribovszki
100 schema:givenName Zoltán
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016274643024.81
102 rdf:type schema:Person
103 sg:person.016470136065.97 schema:affiliation https://www.grid.ac/institutes/grid.425949.7
104 schema:familyName Tóth
105 schema:givenName Tibor
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470136065.97
107 rdf:type schema:Person
108 sg:person.0765033156.17 schema:affiliation https://www.grid.ac/institutes/grid.425949.7
109 schema:familyName Balog
110 schema:givenName Kitti
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765033156.17
112 rdf:type schema:Person
113 sg:pub.10.1007/s00267-004-0194-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030803036
114 https://doi.org/10.1007/s00267-004-0194-7
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00442-007-0694-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048368467
117 https://doi.org/10.1007/s00442-007-0694-2
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11676-016-0339-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054525265
120 https://doi.org/10.1007/s11676-016-0339-6
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/eco.1624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004746120
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1006/anbo.2001.1540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015789781
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0016-7061(71)90057-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037872860
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0378-1127(91)90039-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049147909
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.catena.2016.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040693031
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jclepro.2016.03.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036007457
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jenvman.2009.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016955254
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jhydrol.2007.10.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017699980
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0168-1923(00)00193-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009188129
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0378-3774(98)00073-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023410929
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0378-3774(98)00076-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012203869
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s1002-0160(14)60076-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002798905
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1029/2006jg000246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005876062
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1029/2007gb003000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036676729
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1093/aobpla/plu054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869372
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1093/treephys/18.8-9.625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029242516
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1111/j.1365-2486.2005.00975.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019731189
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1371/journal.pone.0145828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039394552
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1556/agrokem.55.2006.1.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067882776
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2136/sssaj2012.0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069052236
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2136/vzj2007.0119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069053943
163 rdf:type schema:CreativeWork
164 https://doi.org/10.3832/ifor1864-009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071444389
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.410548.c schema:alternateName University of Sopron
167 schema:name Institute of Environmental and Earth Sciences, Faculty of Forestry, University of Sopron, Bajcsy-Zsilinszky u. 4, 9400, Sopron, Hungary
168 Institute of Geomatics and Civil Engineering, Faculty of Forestry, University of Sopron, Bajcsy-Zsilinszky u. 4, 9400, Sopron, Hungary
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.412115.2 schema:alternateName National University of San Luis
171 schema:name Grupo de Estudios Ambientales—IMASL, Universidad Nacional de San Luis & CONICET, Ejército de los Andes 950, D5700HHW, San Luis, Argentina
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.425949.7 schema:alternateName Institute for Soil Science and Agricultural Chemistry
174 schema:name Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, HAS, Herman O u. 15, 1022, Budapest, Hungary
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.481832.4 schema:alternateName Forest Research Institute
177 schema:name Forest Research Institute, National Agricultural Research and Innovation Centre, Várkerület 30/A, 9600, Sárvár, Hungary
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...