Erosion of an Arrow-Type Check Valve Duo to Liquid–Solid Flow Based on Computational Fluid Dynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Xiaodong Zhang, Yongsen Chen, Wenwu Yang

ABSTRACT

The computational model of an arrow-type check valve coupling with a combined continuous-phase and discrete-phase models has been used to predict the particle erosion of an arrow-type check valve by computational fluid dynamics method and Fluent software. The flow field distribution of liquid–solid flow is captured under various valve opening conditions. The effects of inlet velocity, particle flow rate and particle diameter are discussed, respectively, in detail, which are also captured the particle erosion of an arrow-type check valve under different flow parameters. The results reveal that the valve opening has an important effect on the pressure, velocity and turbulence intensity. However, the changes are not obvious as the valve opening is more than 15 mm. The results also indicate that the small cylinders of an arrow-type check valve are severe erosion, and erosion rate of an arrow-type check valve is most sensitive to the changes in inlet velocity especially when the speed is over 10 m/s. Compared with inlet velocity, the influence of particle flow rate and particle diameter on erosion is weak. More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11668-019-00632-y

DOI

http://dx.doi.org/10.1007/s11668-019-00632-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113042714


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiaodong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yongsen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Wenwu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2014.02.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029860839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-5910(89)80008-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032908481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechatronics.2013.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033896805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(97)00217-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035663491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.59826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043344750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/815945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045484990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-727x(98)10039-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053394675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3077139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062100863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1687814017694580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084247669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1687814017694580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084247669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1757482x17702390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085717099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1757482x17702390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085717099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfailanal.2017.06.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086152409"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The computational model of an arrow-type check valve coupling with a combined continuous-phase and discrete-phase models has been used to predict the particle erosion of an arrow-type check valve by computational fluid dynamics method and Fluent software. The flow field distribution of liquid\u2013solid flow is captured under various valve opening conditions. The effects of inlet velocity, particle flow rate and particle diameter are discussed, respectively, in detail, which are also captured the particle erosion of an arrow-type check valve under different flow parameters. The results reveal that the valve opening has an important effect on the pressure, velocity and turbulence intensity. However, the changes are not obvious as the valve opening is more than 15 mm. The results also indicate that the small cylinders of an arrow-type check valve are severe erosion, and erosion rate of an arrow-type check valve is most sensitive to the changes in inlet velocity especially when the speed is over 10 m/s. Compared with inlet velocity, the influence of particle flow rate and particle diameter on erosion is weak.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11668-019-00632-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136274", 
        "issn": [
          "1547-7029", 
          "1864-1245"
        ], 
        "name": "Journal of Failure Analysis and Prevention", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Erosion of an Arrow-Type Check Valve Duo to Liquid\u2013Solid Flow Based on Computational Fluid Dynamics", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3599ac4ed5364bf12093278e27c459c8e8bd2400ef1c18cd481ec563e3651342"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11668-019-00632-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113042714"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11668-019-00632-y", 
      "https://app.dimensions.ai/details/publication/pub.1113042714"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117100_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11668-019-00632-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11668-019-00632-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11668-019-00632-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11668-019-00632-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11668-019-00632-y'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11668-019-00632-y schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ncf64478370cd45659216bba6fc19feee
4 schema:citation https://doi.org/10.1016/0032-5910(89)80008-7
5 https://doi.org/10.1016/j.engfailanal.2017.06.045
6 https://doi.org/10.1016/j.mechatronics.2013.09.006
7 https://doi.org/10.1016/j.nucengdes.2014.02.030
8 https://doi.org/10.1016/s0043-1648(97)00217-2
9 https://doi.org/10.1016/s0142-727x(98)10039-5
10 https://doi.org/10.1115/1.3077139
11 https://doi.org/10.1155/2014/815945
12 https://doi.org/10.1177/1687814017694580
13 https://doi.org/10.1177/1757482x17702390
14 https://doi.org/10.2514/3.59826
15 schema:datePublished 2019-04
16 schema:datePublishedReg 2019-04-01
17 schema:description The computational model of an arrow-type check valve coupling with a combined continuous-phase and discrete-phase models has been used to predict the particle erosion of an arrow-type check valve by computational fluid dynamics method and Fluent software. The flow field distribution of liquid–solid flow is captured under various valve opening conditions. The effects of inlet velocity, particle flow rate and particle diameter are discussed, respectively, in detail, which are also captured the particle erosion of an arrow-type check valve under different flow parameters. The results reveal that the valve opening has an important effect on the pressure, velocity and turbulence intensity. However, the changes are not obvious as the valve opening is more than 15 mm. The results also indicate that the small cylinders of an arrow-type check valve are severe erosion, and erosion rate of an arrow-type check valve is most sensitive to the changes in inlet velocity especially when the speed is over 10 m/s. Compared with inlet velocity, the influence of particle flow rate and particle diameter on erosion is weak.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N3fe8cca59ce5422a8340a21814a51c0f
22 Ne1120d1c14964b40bec1d09c1ec30280
23 sg:journal.1136274
24 schema:name Erosion of an Arrow-Type Check Valve Duo to Liquid–Solid Flow Based on Computational Fluid Dynamics
25 schema:pagination 1-11
26 schema:productId N20eaa2685cd541d1b2ce6bff9238e292
27 N4fdb1dc9108c44b396641da5e11eaffa
28 Nd11aced1a57d470783ecd6c8da25e239
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113042714
30 https://doi.org/10.1007/s11668-019-00632-y
31 schema:sdDatePublished 2019-04-11T14:18
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nb038cb96e97b4cbeadd30f86db1888fb
34 schema:url https://link.springer.com/10.1007%2Fs11668-019-00632-y
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N20eaa2685cd541d1b2ce6bff9238e292 schema:name dimensions_id
39 schema:value pub.1113042714
40 rdf:type schema:PropertyValue
41 N3f9632ad14d34c779f97803ff9e5eb05 rdf:first Ncc8ace3359b7476791dec716e5b11c2f
42 rdf:rest rdf:nil
43 N3fe8cca59ce5422a8340a21814a51c0f schema:issueNumber 2
44 rdf:type schema:PublicationIssue
45 N4fdb1dc9108c44b396641da5e11eaffa schema:name readcube_id
46 schema:value 3599ac4ed5364bf12093278e27c459c8e8bd2400ef1c18cd481ec563e3651342
47 rdf:type schema:PropertyValue
48 N8aebf97d3cfc47d08a8eb2f0ab711305 schema:affiliation https://www.grid.ac/institutes/grid.437806.e
49 schema:familyName Chen
50 schema:givenName Yongsen
51 rdf:type schema:Person
52 Nb038cb96e97b4cbeadd30f86db1888fb schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nb59405e0ed6c48d7a00decfb3386a6b0 rdf:first N8aebf97d3cfc47d08a8eb2f0ab711305
55 rdf:rest N3f9632ad14d34c779f97803ff9e5eb05
56 Ncc3661fbf48f486a9539ed19783487cd schema:affiliation https://www.grid.ac/institutes/grid.437806.e
57 schema:familyName Zhang
58 schema:givenName Xiaodong
59 rdf:type schema:Person
60 Ncc8ace3359b7476791dec716e5b11c2f schema:affiliation https://www.grid.ac/institutes/grid.437806.e
61 schema:familyName Yang
62 schema:givenName Wenwu
63 rdf:type schema:Person
64 Ncf64478370cd45659216bba6fc19feee rdf:first Ncc3661fbf48f486a9539ed19783487cd
65 rdf:rest Nb59405e0ed6c48d7a00decfb3386a6b0
66 Nd11aced1a57d470783ecd6c8da25e239 schema:name doi
67 schema:value 10.1007/s11668-019-00632-y
68 rdf:type schema:PropertyValue
69 Ne1120d1c14964b40bec1d09c1ec30280 schema:volumeNumber 19
70 rdf:type schema:PublicationVolume
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
75 schema:name Interdisciplinary Engineering
76 rdf:type schema:DefinedTerm
77 sg:journal.1136274 schema:issn 1547-7029
78 1864-1245
79 schema:name Journal of Failure Analysis and Prevention
80 rdf:type schema:Periodical
81 https://doi.org/10.1016/0032-5910(89)80008-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032908481
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.engfailanal.2017.06.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086152409
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.mechatronics.2013.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033896805
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.nucengdes.2014.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029860839
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0043-1648(97)00217-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035663491
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0142-727x(98)10039-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053394675
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1115/1.3077139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062100863
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1155/2014/815945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045484990
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1177/1687814017694580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084247669
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1177/1757482x17702390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085717099
100 rdf:type schema:CreativeWork
101 https://doi.org/10.2514/3.59826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043344750
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.437806.e schema:alternateName Southwest Petroleum University
104 schema:name School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, China
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...