Analysis of the Young’s Modulus and Impact Strength of A-Glass/Epoxy/Nano-silica Ternary Nano-composites Using Surface Response Methodology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Mohammad Sadegh Bagheri, Faramarz Ashenai Ghasemi, Ismail Ghasemi, Mohammad Hossein Saberian

ABSTRACT

The goal of this study was to investigate the effect of the simultaneous presence of A-glass fibers and nano-silica on an epoxy matrix using the response surface methodology (RSM). The Box–Behnken method was used to design experiments to determine the main and interaction effect between variables including glass fibers (GF), glass fibers length (GFL) and nano-silica (NS) in three levels (5, 10 and 15 wt.% for GF; 3, 6 and 9 mm for GFL; and 0, 0.75 and 1.5 wt.% for NS). The RSM provides a model for each response with high confident. Moreover, RSM models were used to predict the optimal case for the maximum Young’s modulus and impact strength. The optimal case was estimated to be 15 wt.% for GF at 5.9697 mm length and 0.8182 wt.% for NS. Experimental tests showed an agreement with the predicted values. Further, scanning electron microscopy was used to evaluate the morphology of the samples. It was found that the length of the glass fiber and nanoparticles had the most effect on the Young’s modulus and impact strength, respectively. More... »

PAGES

1-12

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11668-018-0544-z

DOI

http://dx.doi.org/10.1007/s11668-018-0544-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107273422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shahid Rajaee Teacher Training University", 
          "id": "https://www.grid.ac/institutes/grid.440791.f", 
          "name": [
            "Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bagheri", 
        "givenName": "Mohammad Sadegh", 
        "id": "sg:person.013504405505.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504405505.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shahid Rajaee Teacher Training University", 
          "id": "https://www.grid.ac/institutes/grid.440791.f", 
          "name": [
            "Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashenai Ghasemi", 
        "givenName": "Faramarz", 
        "id": "sg:person.012111444505.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111444505.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iran Polymer and Petrochemical Institute", 
          "id": "https://www.grid.ac/institutes/grid.419412.b", 
          "name": [
            "Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghasemi", 
        "givenName": "Ismail", 
        "id": "sg:person.014573221631.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014573221631.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shahid Rajaee Teacher Training University", 
          "id": "https://www.grid.ac/institutes/grid.440791.f", 
          "name": [
            "Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saberian", 
        "givenName": "Mohammad Hossein", 
        "id": "sg:person.011450751224.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011450751224.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.19930050603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000488169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2012.07.361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002027319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12221-013-1877-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002482688", 
          "https://doi.org/10.1007/s12221-013-1877-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.protcy.2016.01.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005560525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.porgcoat.2012.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006072624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2013.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008777258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2008.02.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010268534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15440478.2012.738036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010720093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011847799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2005.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016610835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2015.08.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021390867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2008.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023042249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfracmech.2006.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027291431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/318475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029235403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progpolymsci.2013.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031111309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijbiomac.2013.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031874329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2015.11.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033651891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/275037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041916282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pc.22716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044896423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am3010576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045514960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00289-013-1064-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046507516", 
          "https://doi.org/10.1007/s00289-013-1064-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048934529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2008.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051060703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00289-015-1574-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051458995", 
          "https://doi.org/10.1007/s00289-015-1574-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00289-015-1574-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051458995", 
          "https://doi.org/10.1007/s00289-015-1574-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.5b09149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055128521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/metal/2013080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057044577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684411435727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684411435727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684411435727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5545/sv-jme.2015.2641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072971215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965545x17030026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084223168", 
          "https://doi.org/10.1134/s0965545x17030026"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The goal of this study was to investigate the effect of the simultaneous presence of A-glass fibers and nano-silica on an epoxy matrix using the response surface methodology (RSM). The Box\u2013Behnken method was used to design experiments to determine the main and interaction effect between variables including glass fibers (GF), glass fibers length (GFL) and nano-silica (NS) in three levels (5, 10 and 15 wt.% for GF; 3, 6 and 9 mm for GFL; and 0, 0.75 and 1.5 wt.% for NS). The RSM provides a model for each response with high confident. Moreover, RSM models were used to predict the optimal case for the maximum Young\u2019s modulus and impact strength. The optimal case was estimated to be 15 wt.% for GF at 5.9697 mm length and 0.8182 wt.% for NS. Experimental tests showed an agreement with the predicted values. Further, scanning electron microscopy was used to evaluate the morphology of the samples. It was found that the length of the glass fiber and nanoparticles had the most effect on the Young\u2019s modulus and impact strength, respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11668-018-0544-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136274", 
        "issn": [
          "1547-7029", 
          "1864-1245"
        ], 
        "name": "Journal of Failure Analysis and Prevention", 
        "type": "Periodical"
      }
    ], 
    "name": "Analysis of the Young\u2019s Modulus and Impact Strength of A-Glass/Epoxy/Nano-silica Ternary Nano-composites Using Surface Response Methodology", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3b1c7960a5dbe8694b92f601947ddf1783e5f41f0825f08daf3fe2e82728b023"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11668-018-0544-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107273422"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11668-018-0544-z", 
      "https://app.dimensions.ai/details/publication/pub.1107273422"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000541.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11668-018-0544-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11668-018-0544-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11668-018-0544-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11668-018-0544-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11668-018-0544-z'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      54 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11668-018-0544-z schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N74c08f002c444fdbb66246c996086247
4 schema:citation sg:pub.10.1007/s00289-013-1064-3
5 sg:pub.10.1007/s00289-015-1574-2
6 sg:pub.10.1007/s12221-013-1877-6
7 sg:pub.10.1134/s0965545x17030026
8 https://doi.org/10.1002/adma.19930050603
9 https://doi.org/10.1002/pc.22716
10 https://doi.org/10.1016/j.actamat.2005.12.009
11 https://doi.org/10.1016/j.compositesb.2013.09.004
12 https://doi.org/10.1016/j.compositesb.2015.08.075
13 https://doi.org/10.1016/j.compscitech.2008.02.026
14 https://doi.org/10.1016/j.compscitech.2015.11.027
15 https://doi.org/10.1016/j.engfracmech.2006.05.015
16 https://doi.org/10.1016/j.ijbiomac.2013.06.029
17 https://doi.org/10.1016/j.jmatprotec.2005.02.011
18 https://doi.org/10.1016/j.jmatprotec.2008.11.021
19 https://doi.org/10.1016/j.matchemphys.2012.11.001
20 https://doi.org/10.1016/j.polymer.2008.06.023
21 https://doi.org/10.1016/j.porgcoat.2012.05.013
22 https://doi.org/10.1016/j.proeng.2012.07.361
23 https://doi.org/10.1016/j.progpolymsci.2013.04.001
24 https://doi.org/10.1016/j.protcy.2016.01.041
25 https://doi.org/10.1021/acsami.5b09149
26 https://doi.org/10.1021/am3010576
27 https://doi.org/10.1051/metal/2013080
28 https://doi.org/10.1080/15440478.2012.738036
29 https://doi.org/10.1155/2013/275037
30 https://doi.org/10.1155/2015/318475
31 https://doi.org/10.1177/0731684411435727
32 https://doi.org/10.5545/sv-jme.2015.2641
33 schema:datePublished 2018-12
34 schema:datePublishedReg 2018-12-01
35 schema:description The goal of this study was to investigate the effect of the simultaneous presence of A-glass fibers and nano-silica on an epoxy matrix using the response surface methodology (RSM). The Box–Behnken method was used to design experiments to determine the main and interaction effect between variables including glass fibers (GF), glass fibers length (GFL) and nano-silica (NS) in three levels (5, 10 and 15 wt.% for GF; 3, 6 and 9 mm for GFL; and 0, 0.75 and 1.5 wt.% for NS). The RSM provides a model for each response with high confident. Moreover, RSM models were used to predict the optimal case for the maximum Young’s modulus and impact strength. The optimal case was estimated to be 15 wt.% for GF at 5.9697 mm length and 0.8182 wt.% for NS. Experimental tests showed an agreement with the predicted values. Further, scanning electron microscopy was used to evaluate the morphology of the samples. It was found that the length of the glass fiber and nanoparticles had the most effect on the Young’s modulus and impact strength, respectively.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1136274
40 schema:name Analysis of the Young’s Modulus and Impact Strength of A-Glass/Epoxy/Nano-silica Ternary Nano-composites Using Surface Response Methodology
41 schema:pagination 1-12
42 schema:productId N098e8a7a57cb4043aee1d5738a7b387a
43 N0a30405382c844969cdf488e2224889f
44 N50045243534b4306b5f2d5dc0baaf959
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107273422
46 https://doi.org/10.1007/s11668-018-0544-z
47 schema:sdDatePublished 2019-04-10T14:15
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nef3fb92be87241a2bdd7c95980fc145e
50 schema:url https://link.springer.com/10.1007%2Fs11668-018-0544-z
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N098e8a7a57cb4043aee1d5738a7b387a schema:name doi
55 schema:value 10.1007/s11668-018-0544-z
56 rdf:type schema:PropertyValue
57 N0a30405382c844969cdf488e2224889f schema:name dimensions_id
58 schema:value pub.1107273422
59 rdf:type schema:PropertyValue
60 N50045243534b4306b5f2d5dc0baaf959 schema:name readcube_id
61 schema:value 3b1c7960a5dbe8694b92f601947ddf1783e5f41f0825f08daf3fe2e82728b023
62 rdf:type schema:PropertyValue
63 N6b3539762c2b4e1aaed3b39b82962f18 rdf:first sg:person.012111444505.72
64 rdf:rest Nda78f72be6cc441b8a0eb89deed07c57
65 N74c08f002c444fdbb66246c996086247 rdf:first sg:person.013504405505.38
66 rdf:rest N6b3539762c2b4e1aaed3b39b82962f18
67 Nd78e6e2cfe2c42c1bac824d1d78c5421 rdf:first sg:person.011450751224.81
68 rdf:rest rdf:nil
69 Nda78f72be6cc441b8a0eb89deed07c57 rdf:first sg:person.014573221631.90
70 rdf:rest Nd78e6e2cfe2c42c1bac824d1d78c5421
71 Nef3fb92be87241a2bdd7c95980fc145e schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
77 schema:name Other Physical Sciences
78 rdf:type schema:DefinedTerm
79 sg:journal.1136274 schema:issn 1547-7029
80 1864-1245
81 schema:name Journal of Failure Analysis and Prevention
82 rdf:type schema:Periodical
83 sg:person.011450751224.81 schema:affiliation https://www.grid.ac/institutes/grid.440791.f
84 schema:familyName Saberian
85 schema:givenName Mohammad Hossein
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011450751224.81
87 rdf:type schema:Person
88 sg:person.012111444505.72 schema:affiliation https://www.grid.ac/institutes/grid.440791.f
89 schema:familyName Ashenai Ghasemi
90 schema:givenName Faramarz
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111444505.72
92 rdf:type schema:Person
93 sg:person.013504405505.38 schema:affiliation https://www.grid.ac/institutes/grid.440791.f
94 schema:familyName Bagheri
95 schema:givenName Mohammad Sadegh
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504405505.38
97 rdf:type schema:Person
98 sg:person.014573221631.90 schema:affiliation https://www.grid.ac/institutes/grid.419412.b
99 schema:familyName Ghasemi
100 schema:givenName Ismail
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014573221631.90
102 rdf:type schema:Person
103 sg:pub.10.1007/s00289-013-1064-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046507516
104 https://doi.org/10.1007/s00289-013-1064-3
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00289-015-1574-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051458995
107 https://doi.org/10.1007/s00289-015-1574-2
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s12221-013-1877-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002482688
110 https://doi.org/10.1007/s12221-013-1877-6
111 rdf:type schema:CreativeWork
112 sg:pub.10.1134/s0965545x17030026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084223168
113 https://doi.org/10.1134/s0965545x17030026
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/adma.19930050603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000488169
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/pc.22716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044896423
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.actamat.2005.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048934529
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.compositesb.2013.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008777258
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.compositesb.2015.08.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021390867
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.compscitech.2008.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010268534
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.compscitech.2015.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033651891
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.engfracmech.2006.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027291431
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijbiomac.2013.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031874329
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jmatprotec.2005.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016610835
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jmatprotec.2008.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023042249
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.matchemphys.2012.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011847799
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.polymer.2008.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051060703
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.porgcoat.2012.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006072624
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.proeng.2012.07.361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002027319
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.progpolymsci.2013.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031111309
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.protcy.2016.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005560525
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1021/acsami.5b09149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055128521
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1021/am3010576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045514960
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1051/metal/2013080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057044577
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1080/15440478.2012.738036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010720093
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1155/2013/275037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041916282
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1155/2015/318475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029235403
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1177/0731684411435727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063839277
162 rdf:type schema:CreativeWork
163 https://doi.org/10.5545/sv-jme.2015.2641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072971215
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.419412.b schema:alternateName Iran Polymer and Petrochemical Institute
166 schema:name Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.440791.f schema:alternateName Shahid Rajaee Teacher Training University
169 schema:name Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...