Ontology type: schema:ScholarlyArticle
2012-05-30
AUTHORSGoutam Mukhopadhyay, Sandip Bhattacharyya
ABSTRACTA failure analysis on the cracking of pallet side walls of a sintering machine in an integrated steel plant is presented. The pallets moving at a constant speed carry the base mix for sintering and enter an ignition hood furnace (temperature ≈ 1150°C) at a regular interval of time. The pallet side walls of a sintering machine are therefore subjected to continuous thermal cycling. The material of the pallet side wall is spheroidal graphite (SG) cast iron. Ten cracked side walls are collected and analyzed. The failure investigation involves field visit, visual observation of the cracked side walls, fractography, chemical analysis, microstructural characterization, tensile and impact tests. Most of the cracks are observed between the bolt–hole locations of the lower side walls; bolt–hole locations act as obstructions to thermal movement of the casting. The chemical analysis shows higher level of sulfur while the materials must be of higher purity for SG iron. Fractography shows predominantly intergranular fracture. Examinations of microstructures at the cross sections of the samples show the presence of primarily intergranular cracks. Matrix structure reveals pearlite along with ferrite surrounding the embedded graphite nodules. The amount of pearlite in the matrix is measured around 30–35% whereas predominantly ferrite matrix is desirable at the elevated temperature application. Determinations of tensile and impact properties exhibit low values of elongation (10%) and impact energy (7 J), respectively, indicating poor toughness properties of the casting. The presence of pearlite and lower amount of graphite nodules deteriorate the thermal conductivity of the casting, thereby generating more thermal stress. The analyses show that the pallet side walls start cracking under cyclic high thermal stress due to embrittlement because of improper material. More... »
PAGES354-360
http://scigraph.springernature.com/pub.10.1007/s11668-012-9582-0
DOIhttp://dx.doi.org/10.1007/s11668-012-9582-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1011276893
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Metallurgical Laboratories and QA Group, R&D and Scientific Services, Tata Steel Ltd., 831001, Jamshedpur, India",
"id": "http://www.grid.ac/institutes/grid.460003.1",
"name": [
"Metallurgical Laboratories and QA Group, R&D and Scientific Services, Tata Steel Ltd., 831001, Jamshedpur, India"
],
"type": "Organization"
},
"familyName": "Mukhopadhyay",
"givenName": "Goutam",
"id": "sg:person.012627373741.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627373741.97"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Metallurgical Laboratories and QA Group, R&D and Scientific Services, Tata Steel Ltd., 831001, Jamshedpur, India",
"id": "http://www.grid.ac/institutes/grid.460003.1",
"name": [
"Metallurgical Laboratories and QA Group, R&D and Scientific Services, Tata Steel Ltd., 831001, Jamshedpur, India"
],
"type": "Organization"
},
"familyName": "Bhattacharyya",
"givenName": "Sandip",
"id": "sg:person.014376134625.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014376134625.96"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02651597",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040051389",
"https://doi.org/10.1007/bf02651597"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01174520",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029171716",
"https://doi.org/10.1007/bf01174520"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11661-997-0135-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009544280",
"https://doi.org/10.1007/s11661-997-0135-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-05-30",
"datePublishedReg": "2012-05-30",
"description": "A failure analysis on the cracking of pallet side walls of a sintering machine in an integrated steel plant is presented. The pallets moving at a constant speed carry the base mix for sintering and enter an ignition hood furnace (temperature\u00a0\u2248\u00a01150\u00b0C) at a regular interval of time. The pallet side walls of a sintering machine are therefore subjected to continuous thermal cycling. The material of the pallet side wall is spheroidal graphite (SG) cast iron. Ten cracked side walls are collected and analyzed. The failure investigation involves field visit, visual observation of the cracked side walls, fractography, chemical analysis, microstructural characterization, tensile and impact tests. Most of the cracks are observed between the bolt\u2013hole locations of the lower side walls; bolt\u2013hole locations act as obstructions to thermal movement of the casting. The chemical analysis shows higher level of sulfur while the materials must be of higher purity for SG iron. Fractography shows predominantly intergranular fracture. Examinations of microstructures at the cross sections of the samples show the presence of primarily intergranular cracks. Matrix structure reveals pearlite along with ferrite surrounding the embedded graphite nodules. The amount of pearlite in the matrix is measured around 30\u201335% whereas predominantly ferrite matrix is desirable at the elevated temperature application. Determinations of tensile and impact properties exhibit low values of elongation (10%) and impact energy (7\u00a0J), respectively, indicating poor toughness properties of the casting. The presence of pearlite and lower amount of graphite nodules deteriorate the thermal conductivity of the casting, thereby generating more thermal stress. The analyses show that the pallet side walls start cracking under cyclic high thermal stress due to embrittlement because of improper material.",
"genre": "article",
"id": "sg:pub.10.1007/s11668-012-9582-0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136274",
"issn": [
"1529-8159",
"1547-7029"
],
"name": "Journal of Failure Analysis and Prevention",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "12"
}
],
"keywords": [
"side walls",
"bolt hole location",
"graphite nodules",
"thermal stress",
"poor toughness properties",
"elevated temperature applications",
"high thermal stress",
"examination of microstructure",
"continuous thermal cycling",
"lower side wall",
"toughness properties",
"more thermal stress",
"intergranular fracture",
"intergranular cracks",
"ferrite matrix",
"temperature applications",
"impact properties",
"microstructural characterization",
"thermal conductivity",
"impact tests",
"thermal cycling",
"failure investigation",
"failure analysis",
"sinter plant",
"SG iron",
"steel plant",
"base mix",
"improper materials",
"thermal movement",
"casting",
"constant speed",
"cracking",
"cracks",
"high purity",
"matrix structure",
"materials",
"visual observation",
"fractography",
"wall",
"embrittlement",
"chemical analysis",
"pearlite",
"furnace",
"microstructure",
"ferrite",
"properties",
"machine",
"matrix",
"conductivity",
"graphite",
"lower values",
"stress",
"pallets",
"speed",
"iron",
"investigation",
"energy",
"elongation",
"cross sections",
"low amounts",
"applications",
"amount",
"location",
"fractures",
"purity",
"mix",
"cycling",
"analysis",
"structure",
"plants",
"characterization",
"sulfur",
"test",
"regular intervals",
"values",
"field visits",
"determination",
"time",
"sections",
"presence",
"samples",
"observations",
"movement",
"intervals",
"levels",
"high levels",
"examination",
"nodules",
"obstruction",
"visits"
],
"name": "An Investigation on the Cracking of Pallet Side Walls at a Sinter Plant",
"pagination": "354-360",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1011276893"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11668-012-9582-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11668-012-9582-0",
"https://app.dimensions.ai/details/publication/pub.1011276893"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_575.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11668-012-9582-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11668-012-9582-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11668-012-9582-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11668-012-9582-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11668-012-9582-0'
This table displays all metadata directly associated to this object as RDF triples.
167 TRIPLES
22 PREDICATES
118 URIs
107 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11668-012-9582-0 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N59d41e8beaa543299c57cfc0a29e52c1 |
4 | ″ | schema:citation | sg:pub.10.1007/bf01174520 |
5 | ″ | ″ | sg:pub.10.1007/bf02651597 |
6 | ″ | ″ | sg:pub.10.1007/s11661-997-0135-1 |
7 | ″ | schema:datePublished | 2012-05-30 |
8 | ″ | schema:datePublishedReg | 2012-05-30 |
9 | ″ | schema:description | A failure analysis on the cracking of pallet side walls of a sintering machine in an integrated steel plant is presented. The pallets moving at a constant speed carry the base mix for sintering and enter an ignition hood furnace (temperature ≈ 1150°C) at a regular interval of time. The pallet side walls of a sintering machine are therefore subjected to continuous thermal cycling. The material of the pallet side wall is spheroidal graphite (SG) cast iron. Ten cracked side walls are collected and analyzed. The failure investigation involves field visit, visual observation of the cracked side walls, fractography, chemical analysis, microstructural characterization, tensile and impact tests. Most of the cracks are observed between the bolt–hole locations of the lower side walls; bolt–hole locations act as obstructions to thermal movement of the casting. The chemical analysis shows higher level of sulfur while the materials must be of higher purity for SG iron. Fractography shows predominantly intergranular fracture. Examinations of microstructures at the cross sections of the samples show the presence of primarily intergranular cracks. Matrix structure reveals pearlite along with ferrite surrounding the embedded graphite nodules. The amount of pearlite in the matrix is measured around 30–35% whereas predominantly ferrite matrix is desirable at the elevated temperature application. Determinations of tensile and impact properties exhibit low values of elongation (10%) and impact energy (7 J), respectively, indicating poor toughness properties of the casting. The presence of pearlite and lower amount of graphite nodules deteriorate the thermal conductivity of the casting, thereby generating more thermal stress. The analyses show that the pallet side walls start cracking under cyclic high thermal stress due to embrittlement because of improper material. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N5673589f740840efaef12f0f6c80f9aa |
14 | ″ | ″ | N858c1185f54b4b58bfddb691d24b07e4 |
15 | ″ | ″ | sg:journal.1136274 |
16 | ″ | schema:keywords | SG iron |
17 | ″ | ″ | amount |
18 | ″ | ″ | analysis |
19 | ″ | ″ | applications |
20 | ″ | ″ | base mix |
21 | ″ | ″ | bolt hole location |
22 | ″ | ″ | casting |
23 | ″ | ″ | characterization |
24 | ″ | ″ | chemical analysis |
25 | ″ | ″ | conductivity |
26 | ″ | ″ | constant speed |
27 | ″ | ″ | continuous thermal cycling |
28 | ″ | ″ | cracking |
29 | ″ | ″ | cracks |
30 | ″ | ″ | cross sections |
31 | ″ | ″ | cycling |
32 | ″ | ″ | determination |
33 | ″ | ″ | elevated temperature applications |
34 | ″ | ″ | elongation |
35 | ″ | ″ | embrittlement |
36 | ″ | ″ | energy |
37 | ″ | ″ | examination |
38 | ″ | ″ | examination of microstructure |
39 | ″ | ″ | failure analysis |
40 | ″ | ″ | failure investigation |
41 | ″ | ″ | ferrite |
42 | ″ | ″ | ferrite matrix |
43 | ″ | ″ | field visits |
44 | ″ | ″ | fractography |
45 | ″ | ″ | fractures |
46 | ″ | ″ | furnace |
47 | ″ | ″ | graphite |
48 | ″ | ″ | graphite nodules |
49 | ″ | ″ | high levels |
50 | ″ | ″ | high purity |
51 | ″ | ″ | high thermal stress |
52 | ″ | ″ | impact properties |
53 | ″ | ″ | impact tests |
54 | ″ | ″ | improper materials |
55 | ″ | ″ | intergranular cracks |
56 | ″ | ″ | intergranular fracture |
57 | ″ | ″ | intervals |
58 | ″ | ″ | investigation |
59 | ″ | ″ | iron |
60 | ″ | ″ | levels |
61 | ″ | ″ | location |
62 | ″ | ″ | low amounts |
63 | ″ | ″ | lower side wall |
64 | ″ | ″ | lower values |
65 | ″ | ″ | machine |
66 | ″ | ″ | materials |
67 | ″ | ″ | matrix |
68 | ″ | ″ | matrix structure |
69 | ″ | ″ | microstructural characterization |
70 | ″ | ″ | microstructure |
71 | ″ | ″ | mix |
72 | ″ | ″ | more thermal stress |
73 | ″ | ″ | movement |
74 | ″ | ″ | nodules |
75 | ″ | ″ | observations |
76 | ″ | ″ | obstruction |
77 | ″ | ″ | pallets |
78 | ″ | ″ | pearlite |
79 | ″ | ″ | plants |
80 | ″ | ″ | poor toughness properties |
81 | ″ | ″ | presence |
82 | ″ | ″ | properties |
83 | ″ | ″ | purity |
84 | ″ | ″ | regular intervals |
85 | ″ | ″ | samples |
86 | ″ | ″ | sections |
87 | ″ | ″ | side walls |
88 | ″ | ″ | sinter plant |
89 | ″ | ″ | speed |
90 | ″ | ″ | steel plant |
91 | ″ | ″ | stress |
92 | ″ | ″ | structure |
93 | ″ | ″ | sulfur |
94 | ″ | ″ | temperature applications |
95 | ″ | ″ | test |
96 | ″ | ″ | thermal conductivity |
97 | ″ | ″ | thermal cycling |
98 | ″ | ″ | thermal movement |
99 | ″ | ″ | thermal stress |
100 | ″ | ″ | time |
101 | ″ | ″ | toughness properties |
102 | ″ | ″ | values |
103 | ″ | ″ | visits |
104 | ″ | ″ | visual observation |
105 | ″ | ″ | wall |
106 | ″ | schema:name | An Investigation on the Cracking of Pallet Side Walls at a Sinter Plant |
107 | ″ | schema:pagination | 354-360 |
108 | ″ | schema:productId | N4c31364e4d544be5b59ba034334eeb8c |
109 | ″ | ″ | Na9d80bb4c71c469a89178e214362927b |
110 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011276893 |
111 | ″ | ″ | https://doi.org/10.1007/s11668-012-9582-0 |
112 | ″ | schema:sdDatePublished | 2022-05-20T07:28 |
113 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
114 | ″ | schema:sdPublisher | N855a346115634a21a28287a252de3749 |
115 | ″ | schema:url | https://doi.org/10.1007/s11668-012-9582-0 |
116 | ″ | sgo:license | sg:explorer/license/ |
117 | ″ | sgo:sdDataset | articles |
118 | ″ | rdf:type | schema:ScholarlyArticle |
119 | N115b5589de734ace90e8f38edbd5ebde | rdf:first | sg:person.014376134625.96 |
120 | ″ | rdf:rest | rdf:nil |
121 | N4c31364e4d544be5b59ba034334eeb8c | schema:name | doi |
122 | ″ | schema:value | 10.1007/s11668-012-9582-0 |
123 | ″ | rdf:type | schema:PropertyValue |
124 | N5673589f740840efaef12f0f6c80f9aa | schema:issueNumber | 4 |
125 | ″ | rdf:type | schema:PublicationIssue |
126 | N59d41e8beaa543299c57cfc0a29e52c1 | rdf:first | sg:person.012627373741.97 |
127 | ″ | rdf:rest | N115b5589de734ace90e8f38edbd5ebde |
128 | N855a346115634a21a28287a252de3749 | schema:name | Springer Nature - SN SciGraph project |
129 | ″ | rdf:type | schema:Organization |
130 | N858c1185f54b4b58bfddb691d24b07e4 | schema:volumeNumber | 12 |
131 | ″ | rdf:type | schema:PublicationVolume |
132 | Na9d80bb4c71c469a89178e214362927b | schema:name | dimensions_id |
133 | ″ | schema:value | pub.1011276893 |
134 | ″ | rdf:type | schema:PropertyValue |
135 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
136 | ″ | schema:name | Engineering |
137 | ″ | rdf:type | schema:DefinedTerm |
138 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
139 | ″ | schema:name | Materials Engineering |
140 | ″ | rdf:type | schema:DefinedTerm |
141 | sg:journal.1136274 | schema:issn | 1529-8159 |
142 | ″ | ″ | 1547-7029 |
143 | ″ | schema:name | Journal of Failure Analysis and Prevention |
144 | ″ | schema:publisher | Springer Nature |
145 | ″ | rdf:type | schema:Periodical |
146 | sg:person.012627373741.97 | schema:affiliation | grid-institutes:grid.460003.1 |
147 | ″ | schema:familyName | Mukhopadhyay |
148 | ″ | schema:givenName | Goutam |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627373741.97 |
150 | ″ | rdf:type | schema:Person |
151 | sg:person.014376134625.96 | schema:affiliation | grid-institutes:grid.460003.1 |
152 | ″ | schema:familyName | Bhattacharyya |
153 | ″ | schema:givenName | Sandip |
154 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014376134625.96 |
155 | ″ | rdf:type | schema:Person |
156 | sg:pub.10.1007/bf01174520 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029171716 |
157 | ″ | ″ | https://doi.org/10.1007/bf01174520 |
158 | ″ | rdf:type | schema:CreativeWork |
159 | sg:pub.10.1007/bf02651597 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040051389 |
160 | ″ | ″ | https://doi.org/10.1007/bf02651597 |
161 | ″ | rdf:type | schema:CreativeWork |
162 | sg:pub.10.1007/s11661-997-0135-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009544280 |
163 | ″ | ″ | https://doi.org/10.1007/s11661-997-0135-1 |
164 | ″ | rdf:type | schema:CreativeWork |
165 | grid-institutes:grid.460003.1 | schema:alternateName | Metallurgical Laboratories and QA Group, R&D and Scientific Services, Tata Steel Ltd., 831001, Jamshedpur, India |
166 | ″ | schema:name | Metallurgical Laboratories and QA Group, R&D and Scientific Services, Tata Steel Ltd., 831001, Jamshedpur, India |
167 | ″ | rdf:type | schema:Organization |