Thermal and mechanical properties of ZrO2-CeO2 plasma-sprayed coatings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-09

AUTHORS

S. Sodeoka, M. Suzuki, K. Ueno, H. Sakuramoto, T. Shibata, M. Ando

ABSTRACT

The thermal and mechanical properties of ZrC2-CeO2plasma-sprayed coatings were evaluated to examine their potential as a thermal barrier coating. ZrO2-CeO2 solid-solution powders containing up to 70 mol % CeO2 are successfully plasma sprayed, but cerium content decreases during spraying due to the vaporization of cerium oxide. Hardness is greatest at 30 mol% CeO2. With increased CeO2 content, the thermal conductivity decreases to 0.5 W/m K and the thermal expansion coefficient increases to 12.5 x 10-6 /K. Increased torch input power causes both the relative density and the hardness to increase monotonically, while the thermal conductivity and the thermal expansion coefficient are not significantly affected. When heated above 1300 K, the coating shrinks considerably due to sintering and its thermal conductivity increases abruptly. More... »

PAGES

361-367

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11666-997-0071-z

DOI

http://dx.doi.org/10.1007/s11666-997-0071-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003991991


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Osaka National Research Institute, Agency of Industrial Science and Technology, Midorigaoka 1-8-31, 563, Ikeda, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Osaka National Research Institute, Agency of Industrial Science and Technology, Midorigaoka 1-8-31, 563, Ikeda, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sodeoka", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka National Research Institute, Agency of Industrial Science and Technology, Midorigaoka 1-8-31, 563, Ikeda, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Osaka National Research Institute, Agency of Industrial Science and Technology, Midorigaoka 1-8-31, 563, Ikeda, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka National Research Institute, Agency of Industrial Science and Technology, Midorigaoka 1-8-31, 563, Ikeda, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Osaka National Research Institute, Agency of Industrial Science and Technology, Midorigaoka 1-8-31, 563, Ikeda, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueno", 
        "givenName": "K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka Electronics and Communication University, Hatsucho 18-8, 572, Neyagawa, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Osaka Electronics and Communication University, Hatsucho 18-8, 572, Neyagawa, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakuramoto", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka Electronics and Communication University, Hatsucho 18-8, 572, Neyagawa, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Osaka Electronics and Communication University, Hatsucho 18-8, 572, Neyagawa, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shibata", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka Electronics and Communication University, Hatsucho 18-8, 572, Neyagawa, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Osaka Electronics and Communication University, Hatsucho 18-8, 572, Neyagawa, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ando", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01026311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001978658", 
          "https://doi.org/10.1007/bf01026311"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-09", 
    "datePublishedReg": "1997-09-01", 
    "description": "The thermal and mechanical properties of ZrC2-CeO2plasma-sprayed coatings were evaluated to examine their potential as a thermal barrier coating. ZrO2-CeO2 solid-solution powders containing up to 70 mol % CeO2 are successfully plasma sprayed, but cerium content decreases during spraying due to the vaporization of cerium oxide. Hardness is greatest at 30 mol% CeO2. With increased CeO2 content, the thermal conductivity decreases to 0.5 W/m K and the thermal expansion coefficient increases to 12.5 x 10-6 /K. Increased torch input power causes both the relative density and the hardness to increase monotonically, while the thermal conductivity and the thermal expansion coefficient are not significantly affected. When heated above 1300 K, the coating shrinks considerably due to sintering and its thermal conductivity increases abruptly.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11666-997-0071-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136229", 
        "issn": [
          "1059-9630", 
          "1544-1016"
        ], 
        "name": "Journal of Thermal Spray Technology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "thermal conductivity", 
      "mechanical properties", 
      "torch input power", 
      "thermal barrier coatings", 
      "plasma-sprayed coatings", 
      "solid solution powders", 
      "thermal expansion coefficient", 
      "thermal expansion coefficient increases", 
      "barrier coatings", 
      "expansion coefficient increases", 
      "input power", 
      "relative density", 
      "coefficient increases", 
      "coatings", 
      "cerium oxide", 
      "expansion coefficient", 
      "CeO2 content", 
      "conductivity", 
      "hardness", 
      "content decreases", 
      "CeO2", 
      "sintering", 
      "powder", 
      "properties", 
      "vaporization", 
      "oxide", 
      "power", 
      "density", 
      "coefficient", 
      "plasma", 
      "content", 
      "potential", 
      "increase", 
      "decrease"
    ], 
    "name": "Thermal and mechanical properties of ZrO2-CeO2 plasma-sprayed coatings", 
    "pagination": "361-367", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003991991"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11666-997-0071-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11666-997-0071-z", 
      "https://app.dimensions.ai/details/publication/pub.1003991991"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_292.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11666-997-0071-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11666-997-0071-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11666-997-0071-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11666-997-0071-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11666-997-0071-z'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      60 URIs      51 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11666-997-0071-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Naf6de8ed5d684ec59a1e6145f8b1296d
4 schema:citation sg:pub.10.1007/bf01026311
5 schema:datePublished 1997-09
6 schema:datePublishedReg 1997-09-01
7 schema:description The thermal and mechanical properties of ZrC2-CeO2plasma-sprayed coatings were evaluated to examine their potential as a thermal barrier coating. ZrO2-CeO2 solid-solution powders containing up to 70 mol % CeO2 are successfully plasma sprayed, but cerium content decreases during spraying due to the vaporization of cerium oxide. Hardness is greatest at 30 mol% CeO2. With increased CeO2 content, the thermal conductivity decreases to 0.5 W/m K and the thermal expansion coefficient increases to 12.5 x 10-6 /K. Increased torch input power causes both the relative density and the hardness to increase monotonically, while the thermal conductivity and the thermal expansion coefficient are not significantly affected. When heated above 1300 K, the coating shrinks considerably due to sintering and its thermal conductivity increases abruptly.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N3ace0a0b436746f78d20118da2796bc8
11 N94442933382b439c95d879a1f8af8799
12 sg:journal.1136229
13 schema:keywords CeO2
14 CeO2 content
15 barrier coatings
16 cerium oxide
17 coatings
18 coefficient
19 coefficient increases
20 conductivity
21 content
22 content decreases
23 decrease
24 density
25 expansion coefficient
26 expansion coefficient increases
27 hardness
28 increase
29 input power
30 mechanical properties
31 oxide
32 plasma
33 plasma-sprayed coatings
34 potential
35 powder
36 power
37 properties
38 relative density
39 sintering
40 solid solution powders
41 thermal barrier coatings
42 thermal conductivity
43 thermal expansion coefficient
44 thermal expansion coefficient increases
45 torch input power
46 vaporization
47 schema:name Thermal and mechanical properties of ZrO2-CeO2 plasma-sprayed coatings
48 schema:pagination 361-367
49 schema:productId N20aa376d54d9460c8ee01db1043acdd2
50 N34feb7a00df34014994f6c89c66a466a
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003991991
52 https://doi.org/10.1007/s11666-997-0071-z
53 schema:sdDatePublished 2022-08-04T16:52
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N4d0a8d27ce684b06b80115f879c424b2
56 schema:url https://doi.org/10.1007/s11666-997-0071-z
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N07ff2b5d30a64b6e889f437f7d5e5581 rdf:first N349090b7e90c4d688929c55f0d63c905
61 rdf:rest Ne1e65c541193406db57f0e97b7f9ddef
62 N20aa376d54d9460c8ee01db1043acdd2 schema:name doi
63 schema:value 10.1007/s11666-997-0071-z
64 rdf:type schema:PropertyValue
65 N349090b7e90c4d688929c55f0d63c905 schema:affiliation grid-institutes:None
66 schema:familyName Sakuramoto
67 schema:givenName H.
68 rdf:type schema:Person
69 N34feb7a00df34014994f6c89c66a466a schema:name dimensions_id
70 schema:value pub.1003991991
71 rdf:type schema:PropertyValue
72 N3ace0a0b436746f78d20118da2796bc8 schema:volumeNumber 6
73 rdf:type schema:PublicationVolume
74 N42ec3a97ec5d4f10a7a1dfee3f3e65db rdf:first Ne6e25477791a4cf4a390316470be6fdf
75 rdf:rest Nc365e03c7a0a4109b315e315d70f37bd
76 N4d0a8d27ce684b06b80115f879c424b2 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N6ec720f5ea9447b4b230687f2d7b0621 schema:affiliation grid-institutes:None
79 schema:familyName Ando
80 schema:givenName M.
81 rdf:type schema:Person
82 N81b9e4afdcb1451c8f26d3d159ae52ea rdf:first N6ec720f5ea9447b4b230687f2d7b0621
83 rdf:rest rdf:nil
84 N94442933382b439c95d879a1f8af8799 schema:issueNumber 3
85 rdf:type schema:PublicationIssue
86 Naf6de8ed5d684ec59a1e6145f8b1296d rdf:first Ne9682967a7a64c08a72c1bce788ef8da
87 rdf:rest N42ec3a97ec5d4f10a7a1dfee3f3e65db
88 Nb6571e55c8a54c79af311901aeadaac9 schema:affiliation grid-institutes:None
89 schema:familyName Ueno
90 schema:givenName K.
91 rdf:type schema:Person
92 Nc365e03c7a0a4109b315e315d70f37bd rdf:first Nb6571e55c8a54c79af311901aeadaac9
93 rdf:rest N07ff2b5d30a64b6e889f437f7d5e5581
94 Ndfd3abb9c7ad4150b0d0d12a01fc8006 schema:affiliation grid-institutes:None
95 schema:familyName Shibata
96 schema:givenName T.
97 rdf:type schema:Person
98 Ne1e65c541193406db57f0e97b7f9ddef rdf:first Ndfd3abb9c7ad4150b0d0d12a01fc8006
99 rdf:rest N81b9e4afdcb1451c8f26d3d159ae52ea
100 Ne6e25477791a4cf4a390316470be6fdf schema:affiliation grid-institutes:None
101 schema:familyName Suzuki
102 schema:givenName M.
103 rdf:type schema:Person
104 Ne9682967a7a64c08a72c1bce788ef8da schema:affiliation grid-institutes:None
105 schema:familyName Sodeoka
106 schema:givenName S.
107 rdf:type schema:Person
108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
109 schema:name Engineering
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
112 schema:name Materials Engineering
113 rdf:type schema:DefinedTerm
114 sg:journal.1136229 schema:issn 1059-9630
115 1544-1016
116 schema:name Journal of Thermal Spray Technology
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:pub.10.1007/bf01026311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001978658
120 https://doi.org/10.1007/bf01026311
121 rdf:type schema:CreativeWork
122 grid-institutes:None schema:alternateName Osaka Electronics and Communication University, Hatsucho 18-8, 572, Neyagawa, Osaka, Japan
123 Osaka National Research Institute, Agency of Industrial Science and Technology, Midorigaoka 1-8-31, 563, Ikeda, Osaka, Japan
124 schema:name Osaka Electronics and Communication University, Hatsucho 18-8, 572, Neyagawa, Osaka, Japan
125 Osaka National Research Institute, Agency of Industrial Science and Technology, Midorigaoka 1-8-31, 563, Ikeda, Osaka, Japan
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...