Improving Impact Resistance of High-Velocity Oxygen Fuel-Sprayed WC-17Co Coating Using Taguchi Experimental Design View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-25

AUTHORS

Saeideh Fayyazi, Mahdi Kasraei, Mohammad Ebrahim Bahrololoom

ABSTRACT

The impact resistance of the WC-17Co coating as a function of high-velocity oxy-fuel thermal spraying process parameters was studied and presented in this paper. Design of experiments using Taguchi method and ANOVA were used for optimizing process parameters including grit type, spray distance, oxygen flow rate, carrier gas flow rate, powder feed rate, substrate preheat temperature and coating thickness to attain the maximum impact resistance in the coating. A falling mass impact tester apparatus was designed and fabricated for measuring the impact energy that was absorbed by each coating before failure. After each test, the cracks of each coating were observed under an optical microscope. According to the results, grit type was the most influential factor on increasing the impact resistance of the coatings and the effects of carrier gas flow rate, powder feed rate and substrate preheat temperature on impact resistance of the coatings were found to be negligible. The result of confirmation test showed that Taguchi method was a useful approach in predicting optimum parameters. More... »

PAGES

1-11

Journal

TITLE

Journal of Thermal Spray Technology

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11666-019-00844-6

DOI

http://dx.doi.org/10.1007/s11666-019-00844-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112382200


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shiraz University", 
          "id": "https://www.grid.ac/institutes/grid.412573.6", 
          "name": [
            "Department of Biosystems Engineering, Shiraz University, Shiraz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fayyazi", 
        "givenName": "Saeideh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shiraz University", 
          "id": "https://www.grid.ac/institutes/grid.412573.6", 
          "name": [
            "Department of Biosystems Engineering, Shiraz University, Shiraz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kasraei", 
        "givenName": "Mahdi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shiraz University", 
          "id": "https://www.grid.ac/institutes/grid.412573.6", 
          "name": [
            "Department of Materials Engineering, Shiraz University, Shiraz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bahrololoom", 
        "givenName": "Mohammad Ebrahim", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.commatsci.2016.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001489102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2007.03.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003388968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2010.09.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003855834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0257-8972(02)00632-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004714401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1361/105996305x76513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005633658", 
          "https://doi.org/10.1361/105996305x76513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02608554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008941003", 
          "https://doi.org/10.1007/bf02608554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2015.11.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011728714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-9612(00)00364-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020789036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2015.01.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025087431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2016.02.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028501010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2014.06.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034004448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0257-8972(09)90035-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035302281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2011.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036536487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2015.10.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038221746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2003.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041478117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-009-9438-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045009722", 
          "https://doi.org/10.1007/s11666-009-9438-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-009-9438-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045009722", 
          "https://doi.org/10.1007/s11666-009-9438-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2005.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045243524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2005.02.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045373182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2014.11.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046503802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2014.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048525027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0257-8972(98)00630-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051605943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/jai101571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067617039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/jai101571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067617039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2017.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090807084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmhm.2017.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092296210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2017.10.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092412564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02670844.2017.1415737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099904634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12666-018-1406-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107081838", 
          "https://doi.org/10.1007/s12666-018-1406-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-25", 
    "datePublishedReg": "2019-02-25", 
    "description": "The impact resistance of the WC-17Co coating as a function of high-velocity oxy-fuel thermal spraying process parameters was studied and presented in this paper. Design of experiments using Taguchi method and ANOVA were used for optimizing process parameters including grit type, spray distance, oxygen flow rate, carrier gas flow rate, powder feed rate, substrate preheat temperature and coating thickness to attain the maximum impact resistance in the coating. A falling mass impact tester apparatus was designed and fabricated for measuring the impact energy that was absorbed by each coating before failure. After each test, the cracks of each coating were observed under an optical microscope. According to the results, grit type was the most influential factor on increasing the impact resistance of the coatings and the effects of carrier gas flow rate, powder feed rate and substrate preheat temperature on impact resistance of the coatings were found to be negligible. The result of confirmation test showed that Taguchi method was a useful approach in predicting optimum parameters.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11666-019-00844-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136229", 
        "issn": [
          "1059-9630", 
          "1544-1016"
        ], 
        "name": "Journal of Thermal Spray Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Improving Impact Resistance of High-Velocity Oxygen Fuel-Sprayed WC-17Co Coating Using Taguchi Experimental Design", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6a60d17d493a6690696f1f904ddbce321b1da56ee4b2c5f2789b38f3710ce430"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11666-019-00844-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112382200"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11666-019-00844-6", 
      "https://app.dimensions.ai/details/publication/pub.1112382200"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89785_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11666-019-00844-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11666-019-00844-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11666-019-00844-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11666-019-00844-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11666-019-00844-6'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      51 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11666-019-00844-6 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Na3f6b2a840e1410daadfb58a59f51d5c
4 schema:citation sg:pub.10.1007/bf02608554
5 sg:pub.10.1007/s11666-009-9438-7
6 sg:pub.10.1007/s12666-018-1406-9
7 sg:pub.10.1361/105996305x76513
8 https://doi.org/10.1016/j.commatsci.2016.11.041
9 https://doi.org/10.1016/j.ijrmhm.2017.10.011
10 https://doi.org/10.1016/j.jmatprotec.2007.03.119
11 https://doi.org/10.1016/j.matlet.2016.02.060
12 https://doi.org/10.1016/j.surfcoat.2003.12.028
13 https://doi.org/10.1016/j.surfcoat.2005.02.200
14 https://doi.org/10.1016/j.surfcoat.2005.10.005
15 https://doi.org/10.1016/j.surfcoat.2010.09.041
16 https://doi.org/10.1016/j.surfcoat.2011.08.015
17 https://doi.org/10.1016/j.surfcoat.2014.03.022
18 https://doi.org/10.1016/j.surfcoat.2014.06.039
19 https://doi.org/10.1016/j.surfcoat.2014.11.045
20 https://doi.org/10.1016/j.surfcoat.2015.10.072
21 https://doi.org/10.1016/j.surfcoat.2017.07.029
22 https://doi.org/10.1016/j.surfcoat.2017.10.072
23 https://doi.org/10.1016/j.triboint.2015.11.036
24 https://doi.org/10.1016/j.wear.2015.01.035
25 https://doi.org/10.1016/s0142-9612(00)00364-1
26 https://doi.org/10.1016/s0257-8972(02)00632-1
27 https://doi.org/10.1016/s0257-8972(09)90035-4
28 https://doi.org/10.1016/s0257-8972(98)00630-6
29 https://doi.org/10.1080/02670844.2017.1415737
30 https://doi.org/10.1520/jai101571
31 schema:datePublished 2019-02-25
32 schema:datePublishedReg 2019-02-25
33 schema:description The impact resistance of the WC-17Co coating as a function of high-velocity oxy-fuel thermal spraying process parameters was studied and presented in this paper. Design of experiments using Taguchi method and ANOVA were used for optimizing process parameters including grit type, spray distance, oxygen flow rate, carrier gas flow rate, powder feed rate, substrate preheat temperature and coating thickness to attain the maximum impact resistance in the coating. A falling mass impact tester apparatus was designed and fabricated for measuring the impact energy that was absorbed by each coating before failure. After each test, the cracks of each coating were observed under an optical microscope. According to the results, grit type was the most influential factor on increasing the impact resistance of the coatings and the effects of carrier gas flow rate, powder feed rate and substrate preheat temperature on impact resistance of the coatings were found to be negligible. The result of confirmation test showed that Taguchi method was a useful approach in predicting optimum parameters.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1136229
38 schema:name Improving Impact Resistance of High-Velocity Oxygen Fuel-Sprayed WC-17Co Coating Using Taguchi Experimental Design
39 schema:pagination 1-11
40 schema:productId N09f8905c624f4ee0b2e62b0b9c0f5f9e
41 N1091e90ffb834fe8a41d51c6d22e15cc
42 Ndf6ac87cc2f34a668a6b870c300f9ee5
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112382200
44 https://doi.org/10.1007/s11666-019-00844-6
45 schema:sdDatePublished 2019-04-11T09:49
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nde49a417ae674a44b973bb0b2b5a804a
48 schema:url https://link.springer.com/10.1007%2Fs11666-019-00844-6
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N09f8905c624f4ee0b2e62b0b9c0f5f9e schema:name dimensions_id
53 schema:value pub.1112382200
54 rdf:type schema:PropertyValue
55 N1091e90ffb834fe8a41d51c6d22e15cc schema:name readcube_id
56 schema:value 6a60d17d493a6690696f1f904ddbce321b1da56ee4b2c5f2789b38f3710ce430
57 rdf:type schema:PropertyValue
58 N23c8cb645c6c47259e6839309e868b34 schema:affiliation https://www.grid.ac/institutes/grid.412573.6
59 schema:familyName Kasraei
60 schema:givenName Mahdi
61 rdf:type schema:Person
62 N6db0190839934772b162b8e2cf6d9ed5 rdf:first N23c8cb645c6c47259e6839309e868b34
63 rdf:rest Nbb77a2e2d5ac4b94b828bfd5cfab30aa
64 N7eacfcc040b24526a637070442af0ab0 schema:affiliation https://www.grid.ac/institutes/grid.412573.6
65 schema:familyName Bahrololoom
66 schema:givenName Mohammad Ebrahim
67 rdf:type schema:Person
68 N9a0024aaf74a4ba090f8034ae92e3cd4 schema:affiliation https://www.grid.ac/institutes/grid.412573.6
69 schema:familyName Fayyazi
70 schema:givenName Saeideh
71 rdf:type schema:Person
72 Na3f6b2a840e1410daadfb58a59f51d5c rdf:first N9a0024aaf74a4ba090f8034ae92e3cd4
73 rdf:rest N6db0190839934772b162b8e2cf6d9ed5
74 Nbb77a2e2d5ac4b94b828bfd5cfab30aa rdf:first N7eacfcc040b24526a637070442af0ab0
75 rdf:rest rdf:nil
76 Nde49a417ae674a44b973bb0b2b5a804a schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Ndf6ac87cc2f34a668a6b870c300f9ee5 schema:name doi
79 schema:value 10.1007/s11666-019-00844-6
80 rdf:type schema:PropertyValue
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
85 schema:name Interdisciplinary Engineering
86 rdf:type schema:DefinedTerm
87 sg:journal.1136229 schema:issn 1059-9630
88 1544-1016
89 schema:name Journal of Thermal Spray Technology
90 rdf:type schema:Periodical
91 sg:pub.10.1007/bf02608554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008941003
92 https://doi.org/10.1007/bf02608554
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s11666-009-9438-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045009722
95 https://doi.org/10.1007/s11666-009-9438-7
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s12666-018-1406-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107081838
98 https://doi.org/10.1007/s12666-018-1406-9
99 rdf:type schema:CreativeWork
100 sg:pub.10.1361/105996305x76513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005633658
101 https://doi.org/10.1361/105996305x76513
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.commatsci.2016.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001489102
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.ijrmhm.2017.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092296210
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.jmatprotec.2007.03.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003388968
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.matlet.2016.02.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028501010
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.surfcoat.2003.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041478117
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.surfcoat.2005.02.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045373182
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.surfcoat.2005.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045243524
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.surfcoat.2010.09.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003855834
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.surfcoat.2011.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036536487
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.surfcoat.2014.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048525027
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.surfcoat.2014.06.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034004448
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.surfcoat.2014.11.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046503802
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.surfcoat.2015.10.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038221746
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.surfcoat.2017.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090807084
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.surfcoat.2017.10.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092412564
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.triboint.2015.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011728714
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.wear.2015.01.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025087431
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0142-9612(00)00364-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020789036
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0257-8972(02)00632-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004714401
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0257-8972(09)90035-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035302281
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0257-8972(98)00630-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051605943
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/02670844.2017.1415737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099904634
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1520/jai101571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067617039
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.412573.6 schema:alternateName Shiraz University
150 schema:name Department of Biosystems Engineering, Shiraz University, Shiraz, Iran
151 Department of Materials Engineering, Shiraz University, Shiraz, Iran
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...