Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-12

AUTHORS

Émilien Darthout, François Gitzhofer

ABSTRACT

Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion. More... »

PAGES

1823-1837

References to SciGraph publications

  • 1992-03. RF induction plasma spraying: State-of-the-art review in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 1999-07. Correlation between Young's modulus and porosity in porous materials in JOURNAL OF MATERIALS SCIENCE LETTERS
  • 2010-11-19. Preparation of Nanocomposite GDC/LSCF Cathode Material for IT-SOFC by Induction Plasma Spraying in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 1987-04. X-ray diffraction analysis of Si02 structure in JOURNAL OF MATERIALS SCIENCE
  • 2015-07-11. The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2015-07-24. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2013-09-12. Lu2O3-SiO2-ZrO2 Coatings for Environmental Barrier Application by Solution Precursor Plasma Spraying and Influence of Precursor Chemistry in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2016-07-22. Advanced structural ceramics in aerospace propulsion in NATURE MATERIALS
  • 2012-05-17. Engineering the Microstructure of Solution Precursor Plasma-Sprayed Coatings in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2016-09-08. Processing Parameter Effects and Thermal Properties of Y2Si2O7 Nanostructured Environmental Barrier Coatings Synthesized by Solution Precursor Induction Plasma Spraying in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 1989-07. The structure and microstructure of α-cristobalite and its relationship to β-cristobalite in PHYSICS AND CHEMISTRY OF MINERALS
  • 2004-03. Superior thermal barrier coatings using solution precursor plasma spray in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11666-017-0635-5

    DOI

    http://dx.doi.org/10.1007/s11666-017-0635-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091608392


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Electrochemistry, Plasmas and Energy Research Center, University of Sherbrooke, Sherbrooke, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.86715.3d", 
              "name": [
                "Electrochemistry, Plasmas and Energy Research Center, University of Sherbrooke, Sherbrooke, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Darthout", 
            "givenName": "\u00c9milien", 
            "id": "sg:person.016052660677.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016052660677.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Electrochemistry, Plasmas and Energy Research Center, University of Sherbrooke, Sherbrooke, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.86715.3d", 
              "name": [
                "Electrochemistry, Plasmas and Energy Research Center, University of Sherbrooke, Sherbrooke, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gitzhofer", 
            "givenName": "Fran\u00e7ois", 
            "id": "sg:person.0737063252.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737063252.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11666-010-9583-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044724880", 
              "https://doi.org/10.1007/s11666-010-9583-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01233136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026978220", 
              "https://doi.org/10.1007/bf01233136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-016-0450-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024148445", 
              "https://doi.org/10.1007/s11666-016-0450-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-004-0050-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044645939", 
              "https://doi.org/10.1007/s11666-004-0050-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-013-9987-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049011030", 
              "https://doi.org/10.1007/s11666-013-9987-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02657015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018122198", 
              "https://doi.org/10.1007/bf02657015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-015-0283-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019294467", 
              "https://doi.org/10.1007/s11666-015-0283-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023937645", 
              "https://doi.org/10.1038/nmat4687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00202206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035771242", 
              "https://doi.org/10.1007/bf00202206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-012-9789-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031927956", 
              "https://doi.org/10.1007/s11666-012-9789-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-015-0272-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024746364", 
              "https://doi.org/10.1007/s11666-015-0272-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006669914946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019216794", 
              "https://doi.org/10.1023/a:1006669914946"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09-12", 
        "datePublishedReg": "2017-09-12", 
        "description": "Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300\u00a0\u00b0C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200\u00a0\u00b0C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities\u2014such as Si- and Al-hydroxides\u2014in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24\u00a0h of corrosion.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11666-017-0635-5", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136229", 
            "issn": [
              "1059-9630", 
              "1544-1016"
            ], 
            "name": "Journal of Thermal Spray Technology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "environmental barrier coatings", 
          "barrier coatings", 
          "vertical cracks", 
          "thermal cycling", 
          "Rare earth silicate environmental barrier coatings", 
          "high-temperature corrosion tests", 
          "thermal cycling resistance", 
          "solution precursor plasma", 
          "silicon carbide substrate", 
          "water vapor jet", 
          "additional secondary phases", 
          "water vapor exposure", 
          "polished cross sections", 
          "rare earth disilicates", 
          "turbine engines", 
          "carbide substrates", 
          "corrosion tests", 
          "corrosion testing", 
          "barrier performance", 
          "corrosion kinetics", 
          "vapor jet", 
          "precursor plasma", 
          "zirconia phase", 
          "phase composition", 
          "yttrium silicate", 
          "secondary phases", 
          "coatings", 
          "water vapor", 
          "cracks", 
          "good stability", 
          "spallation", 
          "ambient temperature", 
          "structural evolution", 
          "oven", 
          "corrosion", 
          "substrate", 
          "porosity", 
          "disilicate", 
          "Si", 
          "Al hydroxides", 
          "engine", 
          "jet", 
          "SEM", 
          "XRD", 
          "vapor", 
          "phase", 
          "cycling", 
          "silicate", 
          "temperature", 
          "vapor exposure", 
          "stability", 
          "performance", 
          "cross sections", 
          "kinetics", 
          "specimens", 
          "resistance", 
          "process", 
          "test", 
          "composition", 
          "testing", 
          "plasma", 
          "evolution", 
          "sections", 
          "presence", 
          "lutetium", 
          "literature", 
          "exposure"
        ], 
        "name": "Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings", 
        "pagination": "1823-1837", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091608392"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11666-017-0635-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11666-017-0635-5", 
          "https://app.dimensions.ai/details/publication/pub.1091608392"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_736.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11666-017-0635-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11666-017-0635-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11666-017-0635-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11666-017-0635-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11666-017-0635-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      21 PREDICATES      103 URIs      83 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11666-017-0635-5 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N1a6f15a71b604d2ba804100ae7d52699
    4 schema:citation sg:pub.10.1007/bf00202206
    5 sg:pub.10.1007/bf01233136
    6 sg:pub.10.1007/bf02657015
    7 sg:pub.10.1007/s11666-004-0050-6
    8 sg:pub.10.1007/s11666-010-9583-z
    9 sg:pub.10.1007/s11666-012-9789-3
    10 sg:pub.10.1007/s11666-013-9987-7
    11 sg:pub.10.1007/s11666-015-0272-9
    12 sg:pub.10.1007/s11666-015-0283-6
    13 sg:pub.10.1007/s11666-016-0450-4
    14 sg:pub.10.1023/a:1006669914946
    15 sg:pub.10.1038/nmat4687
    16 schema:datePublished 2017-09-12
    17 schema:datePublishedReg 2017-09-12
    18 schema:description Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.
    19 schema:genre article
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N0bf7bda450e34f46b61a953c18a38fd0
    22 Nfe650fbfaef843a1b8c1d7ea0d4ce363
    23 sg:journal.1136229
    24 schema:keywords Al hydroxides
    25 Rare earth silicate environmental barrier coatings
    26 SEM
    27 Si
    28 XRD
    29 additional secondary phases
    30 ambient temperature
    31 barrier coatings
    32 barrier performance
    33 carbide substrates
    34 coatings
    35 composition
    36 corrosion
    37 corrosion kinetics
    38 corrosion testing
    39 corrosion tests
    40 cracks
    41 cross sections
    42 cycling
    43 disilicate
    44 engine
    45 environmental barrier coatings
    46 evolution
    47 exposure
    48 good stability
    49 high-temperature corrosion tests
    50 jet
    51 kinetics
    52 literature
    53 lutetium
    54 oven
    55 performance
    56 phase
    57 phase composition
    58 plasma
    59 polished cross sections
    60 porosity
    61 precursor plasma
    62 presence
    63 process
    64 rare earth disilicates
    65 resistance
    66 secondary phases
    67 sections
    68 silicate
    69 silicon carbide substrate
    70 solution precursor plasma
    71 spallation
    72 specimens
    73 stability
    74 structural evolution
    75 substrate
    76 temperature
    77 test
    78 testing
    79 thermal cycling
    80 thermal cycling resistance
    81 turbine engines
    82 vapor
    83 vapor exposure
    84 vapor jet
    85 vertical cracks
    86 water vapor
    87 water vapor exposure
    88 water vapor jet
    89 yttrium silicate
    90 zirconia phase
    91 schema:name Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings
    92 schema:pagination 1823-1837
    93 schema:productId Nbc3c4fe9d48048f1b4a5b3d2de0c0b5f
    94 Ne16c242204604c96b64e52d4572863de
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091608392
    96 https://doi.org/10.1007/s11666-017-0635-5
    97 schema:sdDatePublished 2022-12-01T06:36
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher N347ffbd824844000b0fd99bb8b70eb7d
    100 schema:url https://doi.org/10.1007/s11666-017-0635-5
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N0bf7bda450e34f46b61a953c18a38fd0 schema:volumeNumber 26
    105 rdf:type schema:PublicationVolume
    106 N1a6f15a71b604d2ba804100ae7d52699 rdf:first sg:person.016052660677.41
    107 rdf:rest N2bc1b15867354ecbbbd9cb53c1f8f3a6
    108 N2bc1b15867354ecbbbd9cb53c1f8f3a6 rdf:first sg:person.0737063252.42
    109 rdf:rest rdf:nil
    110 N347ffbd824844000b0fd99bb8b70eb7d schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 Nbc3c4fe9d48048f1b4a5b3d2de0c0b5f schema:name dimensions_id
    113 schema:value pub.1091608392
    114 rdf:type schema:PropertyValue
    115 Ne16c242204604c96b64e52d4572863de schema:name doi
    116 schema:value 10.1007/s11666-017-0635-5
    117 rdf:type schema:PropertyValue
    118 Nfe650fbfaef843a1b8c1d7ea0d4ce363 schema:issueNumber 8
    119 rdf:type schema:PublicationIssue
    120 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Engineering
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Materials Engineering
    125 rdf:type schema:DefinedTerm
    126 sg:journal.1136229 schema:issn 1059-9630
    127 1544-1016
    128 schema:name Journal of Thermal Spray Technology
    129 schema:publisher Springer Nature
    130 rdf:type schema:Periodical
    131 sg:person.016052660677.41 schema:affiliation grid-institutes:grid.86715.3d
    132 schema:familyName Darthout
    133 schema:givenName Émilien
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016052660677.41
    135 rdf:type schema:Person
    136 sg:person.0737063252.42 schema:affiliation grid-institutes:grid.86715.3d
    137 schema:familyName Gitzhofer
    138 schema:givenName François
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737063252.42
    140 rdf:type schema:Person
    141 sg:pub.10.1007/bf00202206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035771242
    142 https://doi.org/10.1007/bf00202206
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bf01233136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026978220
    145 https://doi.org/10.1007/bf01233136
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bf02657015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018122198
    148 https://doi.org/10.1007/bf02657015
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s11666-004-0050-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044645939
    151 https://doi.org/10.1007/s11666-004-0050-6
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s11666-010-9583-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1044724880
    154 https://doi.org/10.1007/s11666-010-9583-z
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s11666-012-9789-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031927956
    157 https://doi.org/10.1007/s11666-012-9789-3
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s11666-013-9987-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049011030
    160 https://doi.org/10.1007/s11666-013-9987-7
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s11666-015-0272-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024746364
    163 https://doi.org/10.1007/s11666-015-0272-9
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s11666-015-0283-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019294467
    166 https://doi.org/10.1007/s11666-015-0283-6
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11666-016-0450-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024148445
    169 https://doi.org/10.1007/s11666-016-0450-4
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1023/a:1006669914946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019216794
    172 https://doi.org/10.1023/a:1006669914946
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nmat4687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023937645
    175 https://doi.org/10.1038/nmat4687
    176 rdf:type schema:CreativeWork
    177 grid-institutes:grid.86715.3d schema:alternateName Electrochemistry, Plasmas and Energy Research Center, University of Sherbrooke, Sherbrooke, QC, Canada
    178 schema:name Electrochemistry, Plasmas and Energy Research Center, University of Sherbrooke, Sherbrooke, QC, Canada
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...