Influence of NH4Cl Powder Addition for Fabrication of Aluminum Nitride Coating in Reactive Atmospheric Plasma Spray Process View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01

AUTHORS

Mohammed Shahien, Motohiro Yamada, Toshiaki Yasui, Masahiro Fukumoto

ABSTRACT

Reactive plasma spray is the key to fabricating aluminum nitride (AlN) thermally sprayed coatings. It was possible to fabricate AlN/Al composite coatings using atmospheric plasma spray process through plasma nitriding of Al powders (Al 30 μm). The nitriding reaction and the AlN content could be improved by controlling the spray distance and the feedstock powder particle size. Increasing the spray distance and/or using smaller particle size of Al powders improved the in-flight nitriding reaction. However, it was difficult to fabricate thick and dense AlN coatings with an increase in the spray distance and/or when using fine particles. Thus, the coatings thickness was suppressed because of the complete nitriding of some particles (formation of AlN particles) during flight, which prevents the particle deposition. Furthermore, the excessive vaporization of Al fine particles (due to increased particle temperature) decreased the deposition efficiency. To fabricate thick AlN coatings in the reactive plasma spray process, improving the nitriding reaction of the large Al particles at short spray distance is required to decrease the vaporization of Al particles during flight. This study investigated the influence of adding ammonium chloride (NH4Cl) powders on the nitriding process of large Al powders and on the microstructure of the fabricated coatings. It was possible to fabricate thick AlN coatings at 100 mm spray distance with small addition of NH4Cl powders to the Al feedstock powders (30 μm). Addition of NH4Cl to the starting Al powders promoted the formation of AlN through changing the reaction path to vapor-phase nitridation chlorination-nitridation sequences as confirmed by the thermodynamic analysis of possible intermediate reactions. This changes the nitriding reaction to a mild way, so it is more controlled with no explosive mode and with relatively low heating rates. Thus, NH4Cl acts as a catalyst, nitrogen source, and diluent agent. Furthermore, the evolved gases from the sublimation or decomposition of NH4Cl can prevent the Al particles coalescing after melting. More... »

PAGES

205-212

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11666-010-9584-y

DOI

http://dx.doi.org/10.1007/s11666-010-9584-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049203723


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Toyohashi University of Technology, 1-1, Tempaku-cho, 441-8580, Toyohashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahien", 
        "givenName": "Mohammed", 
        "id": "sg:person.07460023431.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07460023431.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Toyohashi University of Technology, 1-1, Tempaku-cho, 441-8580, Toyohashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Motohiro", 
        "id": "sg:person.013107070653.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013107070653.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Toyohashi University of Technology, 1-1, Tempaku-cho, 441-8580, Toyohashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasui", 
        "givenName": "Toshiaki", 
        "id": "sg:person.013505236761.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505236761.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Toyohashi University of Technology, 1-1, Tempaku-cho, 441-8580, Toyohashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukumoto", 
        "givenName": "Masahiro", 
        "id": "sg:person.011121230431.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011121230431.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-577x(99)00229-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001776261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans.t-m2010804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013062108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeurceramsoc.2003.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016912231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0955-2219(03)00014-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018218536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0955-2219(03)00014-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018218536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(00)00377-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019818055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(00)00377-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019818055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0257-8972(03)00018-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020632102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0257-8972(03)00018-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020632102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6031(94)02119-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020734651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(99)00063-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021292486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(85)90333-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022757627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(85)90333-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022757627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(03)00163-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(03)00163-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(00)01658-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024785442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2003.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025206861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(94)06511-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035503317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssi.2004.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040360248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2006.03.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043637907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.2002.0366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049391046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1994.tb06951.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049856973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-010-9469-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050605393", 
          "https://doi.org/10.1007/s11666-010-9469-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-010-9469-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050605393", 
          "https://doi.org/10.1007/s11666-010-9469-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01", 
    "datePublishedReg": "2011-01-01", 
    "description": "Reactive plasma spray is the key to fabricating aluminum nitride (AlN) thermally sprayed coatings. It was possible to fabricate AlN/Al composite coatings using atmospheric plasma spray process through plasma nitriding of Al powders (Al 30 \u03bcm). The nitriding reaction and the AlN content could be improved by controlling the spray distance and the feedstock powder particle size. Increasing the spray distance and/or using smaller particle size of Al powders improved the in-flight nitriding reaction. However, it was difficult to fabricate thick and dense AlN coatings with an increase in the spray distance and/or when using fine particles. Thus, the coatings thickness was suppressed because of the complete nitriding of some particles (formation of AlN particles) during flight, which prevents the particle deposition. Furthermore, the excessive vaporization of Al fine particles (due to increased particle temperature) decreased the deposition efficiency. To fabricate thick AlN coatings in the reactive plasma spray process, improving the nitriding reaction of the large Al particles at short spray distance is required to decrease the vaporization of Al particles during flight. This study investigated the influence of adding ammonium chloride (NH4Cl) powders on the nitriding process of large Al powders and on the microstructure of the fabricated coatings. It was possible to fabricate thick AlN coatings at 100 mm spray distance with small addition of NH4Cl powders to the Al feedstock powders (30 \u03bcm). Addition of NH4Cl to the starting Al powders promoted the formation of AlN through changing the reaction path to vapor-phase nitridation chlorination-nitridation sequences as confirmed by the thermodynamic analysis of possible intermediate reactions. This changes the nitriding reaction to a mild way, so it is more controlled with no explosive mode and with relatively low heating rates. Thus, NH4Cl acts as a catalyst, nitrogen source, and diluent agent. Furthermore, the evolved gases from the sublimation or decomposition of NH4Cl can prevent the Al particles coalescing after melting.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11666-010-9584-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6033675", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136229", 
        "issn": [
          "1059-9630", 
          "1544-1016"
        ], 
        "name": "Journal of Thermal Spray Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Influence of NH4Cl Powder Addition for Fabrication of Aluminum Nitride Coating in Reactive Atmospheric Plasma Spray Process", 
    "pagination": "205-212", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea6576da625d546a90da8501aae0b2e13492bc33356ae8169c2e3e4e35d85e64"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11666-010-9584-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049203723"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11666-010-9584-y", 
      "https://app.dimensions.ai/details/publication/pub.1049203723"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43226_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11666-010-9584-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11666-010-9584-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11666-010-9584-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11666-010-9584-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11666-010-9584-y'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11666-010-9584-y schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N40e277717d92426a8cb6d36bba727568
4 schema:citation sg:pub.10.1007/s11666-010-9469-0
5 https://doi.org/10.1016/0040-6031(94)02119-9
6 https://doi.org/10.1016/0040-6090(85)90333-5
7 https://doi.org/10.1016/0921-5093(94)06511-x
8 https://doi.org/10.1016/j.jeurceramsoc.2003.12.028
9 https://doi.org/10.1016/j.jmatprotec.2003.12.017
10 https://doi.org/10.1016/j.jmatprotec.2006.03.045
11 https://doi.org/10.1016/j.ssi.2004.05.015
12 https://doi.org/10.1016/s0022-0248(00)00377-8
13 https://doi.org/10.1016/s0167-577x(99)00229-3
14 https://doi.org/10.1016/s0257-8972(03)00018-5
15 https://doi.org/10.1016/s0921-5093(00)01658-0
16 https://doi.org/10.1016/s0921-5093(03)00163-1
17 https://doi.org/10.1016/s0924-0136(99)00063-1
18 https://doi.org/10.1016/s0955-2219(03)00014-1
19 https://doi.org/10.1111/j.1151-2916.1994.tb06951.x
20 https://doi.org/10.1557/jmr.2002.0366
21 https://doi.org/10.2320/matertrans.t-m2010804
22 schema:datePublished 2011-01
23 schema:datePublishedReg 2011-01-01
24 schema:description Reactive plasma spray is the key to fabricating aluminum nitride (AlN) thermally sprayed coatings. It was possible to fabricate AlN/Al composite coatings using atmospheric plasma spray process through plasma nitriding of Al powders (Al 30 μm). The nitriding reaction and the AlN content could be improved by controlling the spray distance and the feedstock powder particle size. Increasing the spray distance and/or using smaller particle size of Al powders improved the in-flight nitriding reaction. However, it was difficult to fabricate thick and dense AlN coatings with an increase in the spray distance and/or when using fine particles. Thus, the coatings thickness was suppressed because of the complete nitriding of some particles (formation of AlN particles) during flight, which prevents the particle deposition. Furthermore, the excessive vaporization of Al fine particles (due to increased particle temperature) decreased the deposition efficiency. To fabricate thick AlN coatings in the reactive plasma spray process, improving the nitriding reaction of the large Al particles at short spray distance is required to decrease the vaporization of Al particles during flight. This study investigated the influence of adding ammonium chloride (NH4Cl) powders on the nitriding process of large Al powders and on the microstructure of the fabricated coatings. It was possible to fabricate thick AlN coatings at 100 mm spray distance with small addition of NH4Cl powders to the Al feedstock powders (30 μm). Addition of NH4Cl to the starting Al powders promoted the formation of AlN through changing the reaction path to vapor-phase nitridation chlorination-nitridation sequences as confirmed by the thermodynamic analysis of possible intermediate reactions. This changes the nitriding reaction to a mild way, so it is more controlled with no explosive mode and with relatively low heating rates. Thus, NH4Cl acts as a catalyst, nitrogen source, and diluent agent. Furthermore, the evolved gases from the sublimation or decomposition of NH4Cl can prevent the Al particles coalescing after melting.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N9a6fd5499b2b417f8536481177785e46
29 Nbdb83ac470334d5e9d8adfcac9ef709e
30 sg:journal.1136229
31 schema:name Influence of NH4Cl Powder Addition for Fabrication of Aluminum Nitride Coating in Reactive Atmospheric Plasma Spray Process
32 schema:pagination 205-212
33 schema:productId N3770ce068de245de9794905c404e4c21
34 N641476e211e544c1b92882420edc3a65
35 N768aca0058bc47c5a870261fcc8bac60
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049203723
37 https://doi.org/10.1007/s11666-010-9584-y
38 schema:sdDatePublished 2019-04-11T10:52
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nff13827db46544328dfb557174061e4a
41 schema:url http://link.springer.com/10.1007%2Fs11666-010-9584-y
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N331c9e528c7645e98a91204aab4e79cd rdf:first sg:person.013107070653.07
46 rdf:rest N3a3adf70dad2469a889036a0c7f10dd4
47 N3770ce068de245de9794905c404e4c21 schema:name readcube_id
48 schema:value ea6576da625d546a90da8501aae0b2e13492bc33356ae8169c2e3e4e35d85e64
49 rdf:type schema:PropertyValue
50 N3a3adf70dad2469a889036a0c7f10dd4 rdf:first sg:person.013505236761.58
51 rdf:rest N47930e7eabb74f5a84ebbd1dc2c493fc
52 N40e277717d92426a8cb6d36bba727568 rdf:first sg:person.07460023431.89
53 rdf:rest N331c9e528c7645e98a91204aab4e79cd
54 N47930e7eabb74f5a84ebbd1dc2c493fc rdf:first sg:person.011121230431.00
55 rdf:rest rdf:nil
56 N641476e211e544c1b92882420edc3a65 schema:name dimensions_id
57 schema:value pub.1049203723
58 rdf:type schema:PropertyValue
59 N768aca0058bc47c5a870261fcc8bac60 schema:name doi
60 schema:value 10.1007/s11666-010-9584-y
61 rdf:type schema:PropertyValue
62 N9a6fd5499b2b417f8536481177785e46 schema:issueNumber 1-2
63 rdf:type schema:PublicationIssue
64 Nbdb83ac470334d5e9d8adfcac9ef709e schema:volumeNumber 20
65 rdf:type schema:PublicationVolume
66 Nff13827db46544328dfb557174061e4a schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
72 schema:name Chemical Engineering
73 rdf:type schema:DefinedTerm
74 sg:grant.6033675 http://pending.schema.org/fundedItem sg:pub.10.1007/s11666-010-9584-y
75 rdf:type schema:MonetaryGrant
76 sg:journal.1136229 schema:issn 1059-9630
77 1544-1016
78 schema:name Journal of Thermal Spray Technology
79 rdf:type schema:Periodical
80 sg:person.011121230431.00 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
81 schema:familyName Fukumoto
82 schema:givenName Masahiro
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011121230431.00
84 rdf:type schema:Person
85 sg:person.013107070653.07 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
86 schema:familyName Yamada
87 schema:givenName Motohiro
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013107070653.07
89 rdf:type schema:Person
90 sg:person.013505236761.58 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
91 schema:familyName Yasui
92 schema:givenName Toshiaki
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505236761.58
94 rdf:type schema:Person
95 sg:person.07460023431.89 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
96 schema:familyName Shahien
97 schema:givenName Mohammed
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07460023431.89
99 rdf:type schema:Person
100 sg:pub.10.1007/s11666-010-9469-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050605393
101 https://doi.org/10.1007/s11666-010-9469-0
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0040-6031(94)02119-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020734651
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0040-6090(85)90333-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022757627
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0921-5093(94)06511-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035503317
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.jeurceramsoc.2003.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016912231
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jmatprotec.2003.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025206861
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.jmatprotec.2006.03.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043637907
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.ssi.2004.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040360248
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0022-0248(00)00377-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019818055
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0167-577x(99)00229-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001776261
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0257-8972(03)00018-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020632102
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0921-5093(00)01658-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024785442
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0921-5093(03)00163-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022959387
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0924-0136(99)00063-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021292486
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0955-2219(03)00014-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018218536
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1111/j.1151-2916.1994.tb06951.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049856973
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1557/jmr.2002.0366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049391046
134 rdf:type schema:CreativeWork
135 https://doi.org/10.2320/matertrans.t-m2010804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013062108
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.412804.b schema:alternateName Toyohashi University of Technology
138 schema:name Toyohashi University of Technology, 1-1, Tempaku-cho, 441-8580, Toyohashi, Japan
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...