Corrosion Behavior of Cold Sprayed Titanium Coatings and Free Standing Deposits View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01

AUTHORS

T. Hussain, D. G. McCartney, P. H. Shipway, T. Marrocco

ABSTRACT

Cold gas dynamic spraying can be used to deposit oxygen-sensitive materials, such as titanium, without significant chemical degradation of the powder. The process is thus believed to have potential for the deposition of corrosion-resistant barrier coatings. However, to be effective, a barrier coating must not allow ingress of a corrosive liquid and hence must not have interconnected porosity. This study investigated the effects of porosity on the corrosion behavior of cold sprayed titanium coatings onto carbon steel and also of free standing deposits. For comparative purposes, a set of free standing deposits was also vacuum heat-treated to further decrease porosity levels below those in the as-sprayed condition. Microstructures were examined by optical and scanning electron microscopy. Mercury intrusion porosimetry (MIP) was used to characterize the interconnected porosity over a size range of micrometers to nanometers. Open circuit potential (OCP) measurements and potentiodynamic polarization scans in 3.5 wt.% NaCl were used to evaluate the corrosion performance. The MIP results showed that in cold sprayed deposits a significant proportion of the porosity was sub-micron and so could not be reliably measured by optical microscope based image analysis. In the case of free standing deposits, a reduction in interconnected porosity resulted in a lower corrosion current density, a lower passive current density, and an increase in OCP closer to that of bulk titanium. For the lowest porosity level, ~1.8% achieved following vacuum heat treatment, the passive current density was identical to that of bulk titanium. However, electrochemical measurements of the coatings showed significant substrate influence when the interconnected porosity of the coating was 11.3 vol.% but a decreased substrate influence with a porosity level of 5.9 vol.%. In the latter case, the OCP was still around 250 mV below that of bulk Ti. Salt spray tests confirmed these electrochemical findings and showed the formation of surface corrosion products following 24-h exposure. More... »

PAGES

260-274

References to SciGraph publications

  • 2008-12. Effect of Process Conditions on Microstructure and Corrosion Resistance of Cold-Sprayed Ti Coatings in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2009-03. Corrosion Properties of Cold-Sprayed Tantalum Coatings in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 1996-12. Densification of plasma-sprayed titanium and tantalum coatings in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2000-03. Characterization of copper layers produced by cold gas-dynamic spraying in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2009-09. Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2006-06. Production of titanium deposits by cold-gas dynamic spray: Numerical modeling and experimental characterization in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2009-12. Effects of Arc Spray Process Parameters on Corrosion Resistance of Ti Coatings in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 1999-06. Corrosion resistance of thermal sprayed titanium coatings in chloride solution in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2005-03. A systematic approach to material eligibility for the cold-spray process in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2007-03. Understanding Grain Growth and Pore Elimination in Vacuum-Plasma-Sprayed Titanium Alloy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2009-03. Characterization of Cold Spray Titanium Supersonic Jet in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2007-12. A Method for Characterizing the Degree of Inter-particle Bond Formation in Cold Sprayed Coatings in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11666-010-9540-x

    DOI

    http://dx.doi.org/10.1007/s11666-010-9540-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023364080


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Division of Materials, Mechanics and Structures, Faculty of Engineering, University of Nottingham, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hussain", 
            "givenName": "T.", 
            "id": "sg:person.012712727557.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712727557.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Division of Materials, Mechanics and Structures, Faculty of Engineering, University of Nottingham, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McCartney", 
            "givenName": "D. G.", 
            "id": "sg:person.011510670534.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011510670534.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Division of Materials, Mechanics and Structures, Faculty of Engineering, University of Nottingham, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shipway", 
            "givenName": "P. H.", 
            "id": "sg:person.014274762007.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274762007.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Welding Institute", 
              "id": "https://www.grid.ac/institutes/grid.4843.b", 
              "name": [
                "The Welding Institute (TWI) Ltd, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marrocco", 
            "givenName": "T.", 
            "id": "sg:person.01277144553.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277144553.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.apsusc.2006.07.063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000135445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0257-8972(02)00919-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007737993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0257-8972(02)00919-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007737993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2006.01.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007978217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-6462(99)00053-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008711180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2005.10.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009703852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-008-9278-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010438372", 
              "https://doi.org/10.1007/s11666-008-9278-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5006/1.3593838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013770174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2008.04.074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015331195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stam.2003.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016062963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016452949", 
              "https://doi.org/10.1007/bf02645274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2010.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017063108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2009.12.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017803825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2008.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018320619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2004.08.072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019038218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/amr.89-91.639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021337900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1361/105996399770350494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023779485", 
              "https://doi.org/10.1361/105996399770350494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-006-9075-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024235854", 
              "https://doi.org/10.1007/s11661-006-9075-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2008.04.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024367496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-008-9281-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026061021", 
              "https://doi.org/10.1007/s11666-008-9281-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2009.07.061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028400406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matlet.2008.04.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029049344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1361/10599630522738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032520970", 
              "https://doi.org/10.1361/10599630522738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-6636(97)00036-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034651491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2008.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036384579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-008-9256-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036734955", 
              "https://doi.org/10.1007/s11666-008-9256-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-009-9298-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036942547", 
              "https://doi.org/10.1007/s11666-009-9298-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-009-9392-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038569771", 
              "https://doi.org/10.1007/s11666-009-9392-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-009-9392-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038569771", 
              "https://doi.org/10.1007/s11666-009-9392-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1361/105996300770350087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039472227", 
              "https://doi.org/10.1361/105996300770350087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0257-8972(00)00549-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043094413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1361/105996306x108219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048604655", 
              "https://doi.org/10.1361/105996306x108219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-007-9070-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049779254", 
              "https://doi.org/10.1007/s11666-007-9070-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2004.06.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049818793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2006.07.104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053213229"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01", 
        "datePublishedReg": "2011-01-01", 
        "description": "Cold gas dynamic spraying can be used to deposit oxygen-sensitive materials, such as titanium, without significant chemical degradation of the powder. The process is thus believed to have potential for the deposition of corrosion-resistant barrier coatings. However, to be effective, a barrier coating must not allow ingress of a corrosive liquid and hence must not have interconnected porosity. This study investigated the effects of porosity on the corrosion behavior of cold sprayed titanium coatings onto carbon steel and also of free standing deposits. For comparative purposes, a set of free standing deposits was also vacuum heat-treated to further decrease porosity levels below those in the as-sprayed condition. Microstructures were examined by optical and scanning electron microscopy. Mercury intrusion porosimetry (MIP) was used to characterize the interconnected porosity over a size range of micrometers to nanometers. Open circuit potential (OCP) measurements and potentiodynamic polarization scans in 3.5 wt.% NaCl were used to evaluate the corrosion performance. The MIP results showed that in cold sprayed deposits a significant proportion of the porosity was sub-micron and so could not be reliably measured by optical microscope based image analysis. In the case of free standing deposits, a reduction in interconnected porosity resulted in a lower corrosion current density, a lower passive current density, and an increase in OCP closer to that of bulk titanium. For the lowest porosity level, ~1.8% achieved following vacuum heat treatment, the passive current density was identical to that of bulk titanium. However, electrochemical measurements of the coatings showed significant substrate influence when the interconnected porosity of the coating was 11.3 vol.% but a decreased substrate influence with a porosity level of 5.9 vol.%. In the latter case, the OCP was still around 250 mV below that of bulk Ti. Salt spray tests confirmed these electrochemical findings and showed the formation of surface corrosion products following 24-h exposure.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11666-010-9540-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136229", 
            "issn": [
              "1059-9630", 
              "1544-1016"
            ], 
            "name": "Journal of Thermal Spray Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Corrosion Behavior of Cold Sprayed Titanium Coatings and Free Standing Deposits", 
        "pagination": "260-274", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6f503d94f55d02cd732a8c2e3bedde66495825a7d219054638e8b1310d02e826"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11666-010-9540-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023364080"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11666-010-9540-x", 
          "https://app.dimensions.ai/details/publication/pub.1023364080"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77574_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11666-010-9540-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11666-010-9540-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11666-010-9540-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11666-010-9540-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11666-010-9540-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    196 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11666-010-9540-x schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N07d4b6c1184e436b804bcebadbbc0546
    4 schema:citation sg:pub.10.1007/bf02645274
    5 sg:pub.10.1007/s11661-006-9075-4
    6 sg:pub.10.1007/s11666-007-9070-3
    7 sg:pub.10.1007/s11666-008-9256-3
    8 sg:pub.10.1007/s11666-008-9278-x
    9 sg:pub.10.1007/s11666-008-9281-2
    10 sg:pub.10.1007/s11666-009-9298-1
    11 sg:pub.10.1007/s11666-009-9392-4
    12 sg:pub.10.1361/105996300770350087
    13 sg:pub.10.1361/10599630522738
    14 sg:pub.10.1361/105996306x108219
    15 sg:pub.10.1361/105996399770350494
    16 https://doi.org/10.1016/j.actamat.2008.06.003
    17 https://doi.org/10.1016/j.actamat.2009.07.061
    18 https://doi.org/10.1016/j.apsusc.2006.07.063
    19 https://doi.org/10.1016/j.jmatprotec.2008.03.005
    20 https://doi.org/10.1016/j.matlet.2008.04.011
    21 https://doi.org/10.1016/j.scriptamat.2005.10.028
    22 https://doi.org/10.1016/j.stam.2003.08.001
    23 https://doi.org/10.1016/j.surfcoat.2004.06.028
    24 https://doi.org/10.1016/j.surfcoat.2004.08.072
    25 https://doi.org/10.1016/j.surfcoat.2006.01.056
    26 https://doi.org/10.1016/j.surfcoat.2006.07.104
    27 https://doi.org/10.1016/j.surfcoat.2008.04.011
    28 https://doi.org/10.1016/j.surfcoat.2008.04.074
    29 https://doi.org/10.1016/j.surfcoat.2009.12.028
    30 https://doi.org/10.1016/j.surfcoat.2010.01.001
    31 https://doi.org/10.1016/s0167-6636(97)00036-7
    32 https://doi.org/10.1016/s0257-8972(00)00549-1
    33 https://doi.org/10.1016/s0257-8972(02)00919-2
    34 https://doi.org/10.1016/s1359-6462(99)00053-6
    35 https://doi.org/10.4028/www.scientific.net/amr.89-91.639
    36 https://doi.org/10.5006/1.3593838
    37 schema:datePublished 2011-01
    38 schema:datePublishedReg 2011-01-01
    39 schema:description Cold gas dynamic spraying can be used to deposit oxygen-sensitive materials, such as titanium, without significant chemical degradation of the powder. The process is thus believed to have potential for the deposition of corrosion-resistant barrier coatings. However, to be effective, a barrier coating must not allow ingress of a corrosive liquid and hence must not have interconnected porosity. This study investigated the effects of porosity on the corrosion behavior of cold sprayed titanium coatings onto carbon steel and also of free standing deposits. For comparative purposes, a set of free standing deposits was also vacuum heat-treated to further decrease porosity levels below those in the as-sprayed condition. Microstructures were examined by optical and scanning electron microscopy. Mercury intrusion porosimetry (MIP) was used to characterize the interconnected porosity over a size range of micrometers to nanometers. Open circuit potential (OCP) measurements and potentiodynamic polarization scans in 3.5 wt.% NaCl were used to evaluate the corrosion performance. The MIP results showed that in cold sprayed deposits a significant proportion of the porosity was sub-micron and so could not be reliably measured by optical microscope based image analysis. In the case of free standing deposits, a reduction in interconnected porosity resulted in a lower corrosion current density, a lower passive current density, and an increase in OCP closer to that of bulk titanium. For the lowest porosity level, ~1.8% achieved following vacuum heat treatment, the passive current density was identical to that of bulk titanium. However, electrochemical measurements of the coatings showed significant substrate influence when the interconnected porosity of the coating was 11.3 vol.% but a decreased substrate influence with a porosity level of 5.9 vol.%. In the latter case, the OCP was still around 250 mV below that of bulk Ti. Salt spray tests confirmed these electrochemical findings and showed the formation of surface corrosion products following 24-h exposure.
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N990bb2744c594926880171f64d8f3c8d
    44 N9c7ecac50bac41efb6e2383dbacc628f
    45 sg:journal.1136229
    46 schema:name Corrosion Behavior of Cold Sprayed Titanium Coatings and Free Standing Deposits
    47 schema:pagination 260-274
    48 schema:productId N49f4a7447f61481b9aa435a8e3120dd4
    49 N6af210813f35478d95b06db1bb68b8f2
    50 Nd07d3c51dc4643278c55084b76e6a41e
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023364080
    52 https://doi.org/10.1007/s11666-010-9540-x
    53 schema:sdDatePublished 2019-04-11T10:50
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher Nadeff7885321434aa82cb4ccb35ea836
    56 schema:url http://link.springer.com/10.1007%2Fs11666-010-9540-x
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N07d4b6c1184e436b804bcebadbbc0546 rdf:first sg:person.012712727557.79
    61 rdf:rest Na9a9109c76a34475bdf01c44a16471f7
    62 N25867fe721b74a9b85111e30ffb3af24 rdf:first sg:person.01277144553.49
    63 rdf:rest rdf:nil
    64 N49f4a7447f61481b9aa435a8e3120dd4 schema:name doi
    65 schema:value 10.1007/s11666-010-9540-x
    66 rdf:type schema:PropertyValue
    67 N6af210813f35478d95b06db1bb68b8f2 schema:name dimensions_id
    68 schema:value pub.1023364080
    69 rdf:type schema:PropertyValue
    70 N990bb2744c594926880171f64d8f3c8d schema:issueNumber 1-2
    71 rdf:type schema:PublicationIssue
    72 N9c7ecac50bac41efb6e2383dbacc628f schema:volumeNumber 20
    73 rdf:type schema:PublicationVolume
    74 Na9a9109c76a34475bdf01c44a16471f7 rdf:first sg:person.011510670534.10
    75 rdf:rest Ne537c343c7284060a7ae2efe9a99aa0b
    76 Nadeff7885321434aa82cb4ccb35ea836 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 Nd07d3c51dc4643278c55084b76e6a41e schema:name readcube_id
    79 schema:value 6f503d94f55d02cd732a8c2e3bedde66495825a7d219054638e8b1310d02e826
    80 rdf:type schema:PropertyValue
    81 Ne537c343c7284060a7ae2efe9a99aa0b rdf:first sg:person.014274762007.29
    82 rdf:rest N25867fe721b74a9b85111e30ffb3af24
    83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Engineering
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Materials Engineering
    88 rdf:type schema:DefinedTerm
    89 sg:journal.1136229 schema:issn 1059-9630
    90 1544-1016
    91 schema:name Journal of Thermal Spray Technology
    92 rdf:type schema:Periodical
    93 sg:person.011510670534.10 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    94 schema:familyName McCartney
    95 schema:givenName D. G.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011510670534.10
    97 rdf:type schema:Person
    98 sg:person.012712727557.79 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    99 schema:familyName Hussain
    100 schema:givenName T.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712727557.79
    102 rdf:type schema:Person
    103 sg:person.01277144553.49 schema:affiliation https://www.grid.ac/institutes/grid.4843.b
    104 schema:familyName Marrocco
    105 schema:givenName T.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277144553.49
    107 rdf:type schema:Person
    108 sg:person.014274762007.29 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    109 schema:familyName Shipway
    110 schema:givenName P. H.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274762007.29
    112 rdf:type schema:Person
    113 sg:pub.10.1007/bf02645274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016452949
    114 https://doi.org/10.1007/bf02645274
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s11661-006-9075-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024235854
    117 https://doi.org/10.1007/s11661-006-9075-4
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s11666-007-9070-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049779254
    120 https://doi.org/10.1007/s11666-007-9070-3
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s11666-008-9256-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036734955
    123 https://doi.org/10.1007/s11666-008-9256-3
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s11666-008-9278-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010438372
    126 https://doi.org/10.1007/s11666-008-9278-x
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s11666-008-9281-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026061021
    129 https://doi.org/10.1007/s11666-008-9281-2
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s11666-009-9298-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036942547
    132 https://doi.org/10.1007/s11666-009-9298-1
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s11666-009-9392-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038569771
    135 https://doi.org/10.1007/s11666-009-9392-4
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1361/105996300770350087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039472227
    138 https://doi.org/10.1361/105996300770350087
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1361/10599630522738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032520970
    141 https://doi.org/10.1361/10599630522738
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1361/105996306x108219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048604655
    144 https://doi.org/10.1361/105996306x108219
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1361/105996399770350494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023779485
    147 https://doi.org/10.1361/105996399770350494
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.actamat.2008.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018320619
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.actamat.2009.07.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028400406
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.apsusc.2006.07.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000135445
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.jmatprotec.2008.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036384579
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.matlet.2008.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029049344
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.scriptamat.2005.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009703852
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.stam.2003.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016062963
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.surfcoat.2004.06.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049818793
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.surfcoat.2004.08.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019038218
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.surfcoat.2006.01.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007978217
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.surfcoat.2006.07.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053213229
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.surfcoat.2008.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024367496
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.surfcoat.2008.04.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015331195
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.surfcoat.2009.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017803825
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.surfcoat.2010.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017063108
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/s0167-6636(97)00036-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034651491
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/s0257-8972(00)00549-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043094413
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/s0257-8972(02)00919-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007737993
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/s1359-6462(99)00053-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008711180
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.4028/www.scientific.net/amr.89-91.639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021337900
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.5006/1.3593838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013770174
    190 rdf:type schema:CreativeWork
    191 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
    192 schema:name Division of Materials, Mechanics and Structures, Faculty of Engineering, University of Nottingham, Nottingham, UK
    193 rdf:type schema:Organization
    194 https://www.grid.ac/institutes/grid.4843.b schema:alternateName Welding Institute
    195 schema:name The Welding Institute (TWI) Ltd, Cambridge, UK
    196 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...