Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-08-25

AUTHORS

M. O. Jarligo, D. E. Mack, G. Mauer, R. Vaßen, D. Stöver

ABSTRACT

High melting materials have always been very attractive candidates for materials development in thermal barrier coating (TBC) applications. Among these materials, complex perovskites with Ba(Mg1/3Ta2/3)O3 and La(Al1/4Mg1/2T1/4)O3 compositions have been developed and deposited in TBC systems by atmospheric plasma spraying. Spray parameters were optimized and in-flight particle temperatures were recorded using Accuraspray-g3 and DPV 2000. Plasma sprayed coatings were found to undergo non-stoichiometric decomposition of components which could have contributed to early failure of the coatings. Particle temperature diagnostics suggest that gun power of ~15 kW or lower where majority of the particles have already solidified upon impact to the substrate could probably prevent the decomposition of phases. Additionally, it has been found that the morphology of the powder feedstock plays a critical role during atmospheric plasma spraying of complex perovskites. More... »

PAGES

303-310

References to SciGraph publications

  • 2000-11. The perovskite structure – a review of its role in ceramic science and technology in MATERIALS RESEARCH INNOVATIONS
  • 2008-10-30. A Universal Method for Representation of In-Flight Particle Characteristics in Thermal Spray Processes in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2006-12. High-velocity DC-VPS for diffusion and protecting barrier layers in solid oxide fuel cells (SOFCs) in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2006-12. Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2007-07-06. Solid Oxide Fuel Cells: A Challenge for Plasma Deposition Processes in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2009-03-06. Application of Plasma-Sprayed Complex Perovskites as Thermal Barrier Coatings in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 1973-06. Formation of metastable phases in flame- and plasma-prepared alumina in JOURNAL OF MATERIALS SCIENCE
  • 2001-06-01. Controlling particle injection in plasma spraying in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2007-06-30. Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2007-10-13. Microstructure and Electrical Conductivity of Atmospheric Plasma-Sprayed LSM/YSZ Composite Cathode Materials in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 1999-09. Preparation of perovskite powders and coatings by radio frequency suspension plasma spraying in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 2008-04-10. Detection of Melting Temperatures and Sources of Errors Using Two-Color Pyrometry During In-flight Measurements of Atmospheric Plasma-Sprayed Particles in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11666-009-9377-3

    DOI

    http://dx.doi.org/10.1007/s11666-009-9377-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015656859


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Energieforschung (IEF-1), Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.8385.6", 
              "name": [
                "Institut f\u00fcr Energieforschung (IEF-1), Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jarligo", 
            "givenName": "M. O.", 
            "id": "sg:person.01211771552.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211771552.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Energieforschung (IEF-1), Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.8385.6", 
              "name": [
                "Institut f\u00fcr Energieforschung (IEF-1), Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mack", 
            "givenName": "D. E.", 
            "id": "sg:person.016641420463.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016641420463.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Energieforschung (IEF-1), Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.8385.6", 
              "name": [
                "Institut f\u00fcr Energieforschung (IEF-1), Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mauer", 
            "givenName": "G.", 
            "id": "sg:person.016614265407.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016614265407.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Energieforschung (IEF-1), Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.8385.6", 
              "name": [
                "Institut f\u00fcr Energieforschung (IEF-1), Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Va\u00dfen", 
            "givenName": "R.", 
            "id": "sg:person.015363047653.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015363047653.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Energieforschung (IEF-1), Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.8385.6", 
              "name": [
                "Institut f\u00fcr Energieforschung (IEF-1), Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "St\u00f6ver", 
            "givenName": "D.", 
            "id": "sg:person.013472527025.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013472527025.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1361/105996306x146758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035495223", 
              "https://doi.org/10.1361/105996306x146758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-007-9053-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048037241", 
              "https://doi.org/10.1007/s11666-007-9053-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1361/105996399770350322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016401271", 
              "https://doi.org/10.1361/105996399770350322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-007-9047-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033068647", 
              "https://doi.org/10.1007/s11666-007-9047-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-008-0422-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002770399", 
              "https://doi.org/10.1007/s10765-008-0422-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-009-9302-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022677213", 
              "https://doi.org/10.1007/s11666-009-9302-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02397914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034912340", 
              "https://doi.org/10.1007/bf02397914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100190000062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044297575", 
              "https://doi.org/10.1007/s100190000062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-008-9214-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004455944", 
              "https://doi.org/10.1007/s11666-008-9214-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1361/105996306x146965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020576637", 
              "https://doi.org/10.1361/105996306x146965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11666-007-9115-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045812702", 
              "https://doi.org/10.1007/s11666-007-9115-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1361/105996301770349367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026808629", 
              "https://doi.org/10.1361/105996301770349367"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-08-25", 
        "datePublishedReg": "2009-08-25", 
        "description": "High melting materials have always been very attractive candidates for materials development in thermal barrier coating (TBC) applications. Among these materials, complex perovskites with Ba(Mg1/3Ta2/3)O3 and La(Al1/4Mg1/2T1/4)O3 compositions have been developed and deposited in TBC systems by atmospheric plasma spraying. Spray parameters were optimized and in-flight particle temperatures were recorded using Accuraspray-g3 and DPV 2000. Plasma sprayed coatings were found to undergo non-stoichiometric decomposition of components which could have contributed to early failure of the coatings. Particle temperature diagnostics suggest that gun power of ~15\u00a0kW or lower where majority of the particles have already solidified upon impact to the substrate could probably prevent the decomposition of phases. Additionally, it has been found that the morphology of the powder feedstock plays a critical role during atmospheric plasma spraying of complex perovskites.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11666-009-9377-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136229", 
            "issn": [
              "1059-9630", 
              "1544-1016"
            ], 
            "name": "Journal of Thermal Spray Technology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "thermal barrier coating applications", 
          "atmospheric plasma", 
          "flight particle temperature", 
          "Atmospheric Plasma Spraying", 
          "high melting materials", 
          "complex perovskites", 
          "decomposition of phases", 
          "DPV 2000", 
          "powder feedstock", 
          "TBC system", 
          "plasma spraying", 
          "spray parameters", 
          "gun power", 
          "TBC applications", 
          "particle temperature", 
          "coating applications", 
          "melting materials", 
          "material development", 
          "coatings", 
          "perovskites", 
          "temperature diagnostics", 
          "early failure", 
          "materials", 
          "attractive candidate", 
          "kW", 
          "applications", 
          "decomposition", 
          "feedstock", 
          "spraying", 
          "particles", 
          "temperature", 
          "substrate", 
          "plasma", 
          "power", 
          "morphology", 
          "parameters", 
          "phase", 
          "system", 
          "composition", 
          "diagnostics", 
          "components", 
          "failure", 
          "candidates", 
          "impact", 
          "development", 
          "critical role", 
          "role", 
          "majority"
        ], 
        "name": "Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application", 
        "pagination": "303-310", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015656859"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11666-009-9377-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11666-009-9377-3", 
          "https://app.dimensions.ai/details/publication/pub.1015656859"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_488.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11666-009-9377-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11666-009-9377-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11666-009-9377-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11666-009-9377-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11666-009-9377-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    181 TRIPLES      21 PREDICATES      84 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11666-009-9377-3 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Na9e694fd72cc45dd8fcfae40a24bbeb6
    4 schema:citation sg:pub.10.1007/bf02397914
    5 sg:pub.10.1007/s100190000062
    6 sg:pub.10.1007/s10765-008-0422-0
    7 sg:pub.10.1007/s11666-007-9047-2
    8 sg:pub.10.1007/s11666-007-9053-4
    9 sg:pub.10.1007/s11666-007-9115-7
    10 sg:pub.10.1007/s11666-008-9214-0
    11 sg:pub.10.1007/s11666-009-9302-9
    12 sg:pub.10.1361/105996301770349367
    13 sg:pub.10.1361/105996306x146758
    14 sg:pub.10.1361/105996306x146965
    15 sg:pub.10.1361/105996399770350322
    16 schema:datePublished 2009-08-25
    17 schema:datePublishedReg 2009-08-25
    18 schema:description High melting materials have always been very attractive candidates for materials development in thermal barrier coating (TBC) applications. Among these materials, complex perovskites with Ba(Mg1/3Ta2/3)O3 and La(Al1/4Mg1/2T1/4)O3 compositions have been developed and deposited in TBC systems by atmospheric plasma spraying. Spray parameters were optimized and in-flight particle temperatures were recorded using Accuraspray-g3 and DPV 2000. Plasma sprayed coatings were found to undergo non-stoichiometric decomposition of components which could have contributed to early failure of the coatings. Particle temperature diagnostics suggest that gun power of ~15 kW or lower where majority of the particles have already solidified upon impact to the substrate could probably prevent the decomposition of phases. Additionally, it has been found that the morphology of the powder feedstock plays a critical role during atmospheric plasma spraying of complex perovskites.
    19 schema:genre article
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N9ca17f626a0145a599a360b9bd11e3c8
    22 Nd292dfbbbf0f468f91f669a3035e9820
    23 sg:journal.1136229
    24 schema:keywords Atmospheric Plasma Spraying
    25 DPV 2000
    26 TBC applications
    27 TBC system
    28 applications
    29 atmospheric plasma
    30 attractive candidate
    31 candidates
    32 coating applications
    33 coatings
    34 complex perovskites
    35 components
    36 composition
    37 critical role
    38 decomposition
    39 decomposition of phases
    40 development
    41 diagnostics
    42 early failure
    43 failure
    44 feedstock
    45 flight particle temperature
    46 gun power
    47 high melting materials
    48 impact
    49 kW
    50 majority
    51 material development
    52 materials
    53 melting materials
    54 morphology
    55 parameters
    56 particle temperature
    57 particles
    58 perovskites
    59 phase
    60 plasma
    61 plasma spraying
    62 powder feedstock
    63 power
    64 role
    65 spray parameters
    66 spraying
    67 substrate
    68 system
    69 temperature
    70 temperature diagnostics
    71 thermal barrier coating applications
    72 schema:name Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application
    73 schema:pagination 303-310
    74 schema:productId N2c8a910f15d147b6822570e0fb9a6331
    75 N2f366027efd94f1e99437e86a96ead16
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015656859
    77 https://doi.org/10.1007/s11666-009-9377-3
    78 schema:sdDatePublished 2022-08-04T16:57
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher Ncfa676d163da42189aca8bef6d94c6df
    81 schema:url https://doi.org/10.1007/s11666-009-9377-3
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N051b958366c34b7784ff9df4f4aec297 rdf:first sg:person.016614265407.01
    86 rdf:rest N47c658424ab5418eaf42dd2c6a10337e
    87 N2c8a910f15d147b6822570e0fb9a6331 schema:name doi
    88 schema:value 10.1007/s11666-009-9377-3
    89 rdf:type schema:PropertyValue
    90 N2f366027efd94f1e99437e86a96ead16 schema:name dimensions_id
    91 schema:value pub.1015656859
    92 rdf:type schema:PropertyValue
    93 N47c658424ab5418eaf42dd2c6a10337e rdf:first sg:person.015363047653.23
    94 rdf:rest Nf6b20fe0e4594e4c8ceaef49723de4bf
    95 N9ca17f626a0145a599a360b9bd11e3c8 schema:volumeNumber 19
    96 rdf:type schema:PublicationVolume
    97 Na9e694fd72cc45dd8fcfae40a24bbeb6 rdf:first sg:person.01211771552.51
    98 rdf:rest Nab83771a7c0c4057a615a302edf2918c
    99 Nab83771a7c0c4057a615a302edf2918c rdf:first sg:person.016641420463.93
    100 rdf:rest N051b958366c34b7784ff9df4f4aec297
    101 Ncfa676d163da42189aca8bef6d94c6df schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 Nd292dfbbbf0f468f91f669a3035e9820 schema:issueNumber 1-2
    104 rdf:type schema:PublicationIssue
    105 Nf6b20fe0e4594e4c8ceaef49723de4bf rdf:first sg:person.013472527025.48
    106 rdf:rest rdf:nil
    107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Engineering
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Materials Engineering
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1136229 schema:issn 1059-9630
    114 1544-1016
    115 schema:name Journal of Thermal Spray Technology
    116 schema:publisher Springer Nature
    117 rdf:type schema:Periodical
    118 sg:person.01211771552.51 schema:affiliation grid-institutes:grid.8385.6
    119 schema:familyName Jarligo
    120 schema:givenName M. O.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211771552.51
    122 rdf:type schema:Person
    123 sg:person.013472527025.48 schema:affiliation grid-institutes:grid.8385.6
    124 schema:familyName Stöver
    125 schema:givenName D.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013472527025.48
    127 rdf:type schema:Person
    128 sg:person.015363047653.23 schema:affiliation grid-institutes:grid.8385.6
    129 schema:familyName Vaßen
    130 schema:givenName R.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015363047653.23
    132 rdf:type schema:Person
    133 sg:person.016614265407.01 schema:affiliation grid-institutes:grid.8385.6
    134 schema:familyName Mauer
    135 schema:givenName G.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016614265407.01
    137 rdf:type schema:Person
    138 sg:person.016641420463.93 schema:affiliation grid-institutes:grid.8385.6
    139 schema:familyName Mack
    140 schema:givenName D. E.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016641420463.93
    142 rdf:type schema:Person
    143 sg:pub.10.1007/bf02397914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034912340
    144 https://doi.org/10.1007/bf02397914
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s100190000062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044297575
    147 https://doi.org/10.1007/s100190000062
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s10765-008-0422-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002770399
    150 https://doi.org/10.1007/s10765-008-0422-0
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s11666-007-9047-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033068647
    153 https://doi.org/10.1007/s11666-007-9047-2
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s11666-007-9053-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048037241
    156 https://doi.org/10.1007/s11666-007-9053-4
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s11666-007-9115-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045812702
    159 https://doi.org/10.1007/s11666-007-9115-7
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s11666-008-9214-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004455944
    162 https://doi.org/10.1007/s11666-008-9214-0
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s11666-009-9302-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022677213
    165 https://doi.org/10.1007/s11666-009-9302-9
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1361/105996301770349367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026808629
    168 https://doi.org/10.1361/105996301770349367
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1361/105996306x146758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035495223
    171 https://doi.org/10.1361/105996306x146758
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1361/105996306x146965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020576637
    174 https://doi.org/10.1361/105996306x146965
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1361/105996399770350322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016401271
    177 https://doi.org/10.1361/105996399770350322
    178 rdf:type schema:CreativeWork
    179 grid-institutes:grid.8385.6 schema:alternateName Institut für Energieforschung (IEF-1), Forschungszentrum Jülich GmbH, Jülich, Germany
    180 schema:name Institut für Energieforschung (IEF-1), Forschungszentrum Jülich GmbH, Jülich, Germany
    181 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...